MODULAR WEIL REPRESENTATION AND COMPATIBILITY OF

CUSPIDALS WITH CONGRUENCES

JUSTIN TRIAS

ABSTRACT. Let F' be a non-archimedean local field of characteristic different from 2
and of residual characteristic p. We generalise the theory of the Weil representation
over F' with complex coefficients to /-modular representations i.e. when the complex
coefficients are replaced by a coefficient field R of characteristic £ # p. We obtain along
the way a generalisation of the Stone-von Neumann theorem to the ¢-modular setting,
together with the Weil representation with coefficients in R on the R-metaplectic group.
Surprisingly enough, the latter R-metaplectic group happens to be split over the sym-
plectic group if £ = 2. The theory also makes sense when F' is a finite field of odd
characteristic. We also establish the irreducibility of the theta lift in the cuspidal case
as long as £ does not divide the pro-orders of the groups at stake and we provide a
compatibility to congruences in this setting via an integral version of the theta lift.
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INTRODUCTION

The theta correspondence plays a key role in the theory of automorphic forms as one

of a few explicit methods to deal with representations of two groups forming a dual pair
in a symplectic group. It allowed to establish the local Langlands correspondence [GT11]
for GSpy, provided relations between Fourier coefficients of modular forms and special
values of L-functions via the Shimura—Waldspurger correspondence [Wal80, Wal91] as
well as deep relations with the formal degree [GI14]. This correspondence has a local

and global version, which are both built via the local and global Weil representation.
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2 JUSTIN TRIAS

On the other hand, there is an interest in considering representations with more
general coefficient fields than the complex numbers, as the classical Weil representation
is. The study of £~-modular representation of p-adic groups — here /-modular means over
a field of positive characteristic different from p — was initiated by Vignéras [Vig89] and
was motivated by conjectures of Serre about congruences between modular forms. It has
been an active research topic ever since, expanding towards families of representations
as well i.e. over coefficient rings putting together characteristic zero fields and positive
characteristic fields.

In this perspective, we propose to generalise the construction of the local Weil repres-
entation to the /-modular setting, where local means for us over a non-archimedean local
field, so we exclude the archimedean case. We also study some properties of congruences
for cuspidal representations and provide an integral version of the theta lift in this case.
The paper is divided into three parts, and so is the rest of the introduction when we
explore our results in more detail. The first part (Sections 1-3) deals with the /-modular
generalisation of the Stone-von Neumann theorem, the Heisenberg representation and its
models, the metaplectic group, the Weil representation and its models, and some other
classical properties. The second part (Sections 4-5) establishes a formula for the meta-
plectic cocycle similiar to [RR93] via an explicit section into the metaplectic group. The
third part (Sections 6-8) states what an ¢-modular local theta correspondence should
look like and studies in more detail the cuspidal case, generalising a result of Kudla as
long as /¢ is large enough. This paper replaces [Tri20] and partially improves it thanks
to the recent results of [DHKM24].

0.1. Let F' be a field of characteristic different from 2, that is either local non-archimedean
of residual characteristic p or finite of characteristic p. Let R be a field of characteristic £

and assume there exists a non-trivial smooth character ¢ : F — R*. In particular, this

condition forces ¢ # p. All our characters and representations are assumed to be smooth.

Let W be a symplectic space of finite dimension over F' and let H be the Heisenberg

group. We generalise the theorem of Stone-von Neumann:

Theorem A. Let i) : FF — R* be a non-trivial character. Up to isomorphism, there
exists a unique irreducible representation (py,S) € Repr(H) with central character 1.

We call the unique isomorphism class of the theorem the Heisenberg representation
associated to . The Heisenberg representation has explicit models afforded by self-dual
subgroups in W such as Lagrangians (the Schrodinger model) and self-dual lattices when
F is local non-archimedean (the lattice model). Let (py, S) be any model of the Heisen-
berg representation. The natural action of Sp(1W') on H preserves the isomorphism class
of (py, ), so Schur’s lemma gives a projective representation og : Sp(W) — PGLR(S).
By taking the fibre product og lifts to an actual representation wy, g i.e.

Wy, s

~—R
Spy,s(W) ——= GLg(S5)

Sp(W) — > PGLg(S)
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~R
where Spy, ¢(W) = Sp(W) Xpary(s) GLr(S) is a central extension of Sp(W) by R*
called the R-metaplectic group and wy, g is called the Weil representation.
The R-metaplectic group fits into an exact sequence

1 — R* 55 Sp, o(W) 25 Sp(W) — 1.

We prove that the derived subgroup §f)¢’ g(W) of the R-metaplectic group is

e the usual metaplectic group Mp(W) if F' is local non-archimedean and ¢ # 2;
e the derived subgroup [Sp(W), Sp(W)] of Sp(W) if F is finite or £ = 2.

Note that [Sp(W),Sp(W)] = Sp(W), except in the exceptional case Sp(W) ~ SLy(F3).
When F' is local non-archimedean and ¢ = 2, the R-metaplectic group is actually split
since it contains Sp(W). In this case, the Weil representation becomes a representation
of Sp(W) rather than the two-fold cover Mp(W). Intuitively, when ¢ = 2, a genuine
representation of Mp(W) actually factors through Sp(WW) since 1 = —1 in R.

We then study classical properties of the R-metaplectic group and prove it is a locally
profinite group. We also prove other classical facts about the Weil representation, namely
it is smooth and admissible. We also give some formulas for the Weil representation in
different famous models, such as the Shcrodinger and the lattice models.

0.2. We then build a section Sp(W) — SE@Z),S(W) of pg which is equivalent to giving a
map g € Sp(W) — M, € GLg(S) such that 05(g) = RED(M,) for all g € Sp(W). We
do not follow the classical construction of such a section, and propose a new approach,
for two reasons.

First of all, the classical constructions, such as the Shale-Segal-Weil representation
[RR93] or even all usual formulas on the Schrédinger model, require to introduce quant-
ities which may not be already in R in the following sense. Let F' be p-adic and let
R = Q[(p~]. Then the theorem of Stone-von Neumann is valid over Q[(p~], however,
the classical sections of pg are not necessarily defined over Q[(p~] because they require
V/q to be in Q[(pec] where ¢ is the residue cardinality of F' i.e. we do not necessarily have
V4 € Q[(p=]. As a result, in order to define the classical section, one needs to adjoin /g
to Q[(pe=], but it seems wrong to do so if we were able to define a section directly valued
in Q[(p]. Note that either \/p or iy/p belongs to Q[(p] when p # 2, but i & Q[(pe<],
so only one of them belongs to Q[(pe<].

Secondly, the classical sections make a key use of unitarity in order to normalise some
operators and a uniqueness statement such as [RR93, Th 3.5] is impossible to achieve
when R has positive characteristic since unitarity does not make sense. These consider-
ations become extremely important if one wants to descend the Weil representation over
a number field, as we will do in [Tri26].

For these reasons, we adopt a new strategy which is based on a quantity called the
non-normalised Weil factor. As opposed to the classical Weil factor, its non-normalised
version is guaranteed to remain within the realm of the values of the character v and does
not require to make any choice in R, while the Weil factor requires one to fix /g € R.
We also interpret this quantity as a natural way to normalise Fourier transforms, by
staying in the range of the values of . This allows us to directly define a section

o : Sp(W) — Spy. s, (W)
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in the Schrodinger model Sx, which is valued in éf)w sy (W) if F'is local non-archimedean
and ¢ # 2 and is a group morphism when F' is finite or ¢ = 2. Similarly to [RR93],
this section allows us to make explicit the associated 2-cocyle ¢, called the metaplectic
cocycle, which is respectively {#1}-valued or trivial. Again, the fact that this cocycle is
{#£1}-valued or trivial will be central in the Galois descent arguments of [Tri26].

0.3. We now suppose that R is an algebraically closed field. Let (Hy, H2) be a dual pair
of type Iin Sp(W). We assume that the inverse images of H; and Ha in Mp(W) are split.
In particular, the Weil representation wf can be pulled back along Hy x Hy — Mp(W).
If II; € Repr(H;) is irreducible and cuspidal, the largest II;-isotypic quotient of the
Weil representation satisfies (wf;)nl ~ IT; @ O(11;) where O(I1;) € Repr(Ha).

In the classical theta correspondence, i.e. when R = C, a famous result [Kud86] of
Kudla states that, if ©(II;) # 0 is cuspidal, then it is irreducible. This situation happens
for the so-called first occurrence in Witt towers. There is an even stronger version of
this result, which says that ©(Il;) is either zero or irreducible [MVWS87]. As C and Qp
are isomorphic, these results are also valid replacing C by Q.

We assume ¢ does not divide the pro-order of H;. Then II; is an integral representation
and for all stable Z,-lattices L in II;, we have L ®EE ~ 71 where m is irreducible and
cuspidal. By the Brauer-Nesbitt principle, the representation 7m; does not depend on the
choice of L. We write 7 = ry(II;). Therefore

(Wi, ~ I @g- O(Ih) and (wy)ir, ~ m @ O(m)

and since 7 = r¢(Il;), we want to relate O(Il;) € Repg;(Hz) and O(m1) € Repg,(Hz).
Recall that ©(I1;) is either zero or irreducible.
We are able to do so, i.e. we are able to produce congruences, using an integral model

of the Weil representation wié [Tri23]. We show that there exists a decomposition

Z¢ Zy Z
wy’ = emwy’ @ (1 — e, )w,’
where enlwg‘ € RGPE(H 1 X Hy) is a Z-lattice which controls these congruences i.e.

enlwi" ®ZT@ ~ 11 ®g, O(II;) and enlwi2 ®EE ~ T ®F, O(m).
In particular ©(m) has finite length. This allows us to generalise Kudla’s result:

Theorem B. Suppose £ does not divide the pro-orders of Hy and Hs. We assume that
O©(I1y) s the first occurrence index of I1y in the local theta correspondence i.e. ©(IIy) is
irreducible cuspidal. Then ©(m1) = re(O(ILy)) is irreducible cuspidal.
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NOTATIONS

Let F be a field of characteristic different from 2, that is either a finite field of car-
dinality g or a non-archimedean local field of residue characteristic q. We write ¢ = pf.
When F is local non-archimedean, we let O be its ring of integers and kg its residue
field and we fix a uniformiser wp in Op. Let (, )r be the quadratic Hilbert symbol,
which is trivial if F' is finite. If F' is local non-archimedean and V is a finite dimensional
F-vector space, a lattice in V is a free Op-module of rank the dimension of V.

Let (W, (, )) be a symplectic vector space of dimension n = 2m over F. A subspace
X C W is totally isotropic if (, )|xxx is identically zero. A totally isotropic subspace is
maximal if and only if it has dimension m. Such a maximal space is called a Lagrangian
in W. A complete polarisation W = X @ Y is made of two transverse Lagrangians X
and Y in W. The symplectic group Sp(W) is the group of isometries of W.

Let G be a locally profinite group i.e. a locally compact totally disconnected topo-
logical group. Let K be a compact open subgroup of G. The pro-order of K is the
least common multiple of the cardinality of the finite quotients of K [Vig96, 1.1.5]. The
pro-order |G| of G is the least common multiple of the |K|’s where K runs over all
compact open subgroups of G. When G is a reductive group over F, i.e. the F-points
of a reductive algebraic group defined over F', we usually have |G| =n fpk where ny € N
is prime-to-p and k£ € NU {oo}.

Let R be a field of characteristic £. Let C°(G, R) be the space of locally constant
compactly supported functions on G valued in R. If G contains a compact open subgroup
of invertible pro-order in R, there exists a Haar measure p of G with values in R by
[Vig96, 1.2.4] and all such measures are unique up to a scalar in R*. If a compact open
subgroup K has invertible pro-order in R, there exists a unique measure pg such that
K has volume 1. We call it the normalised measure on K. After fixing a measure of G,
we can endow C°(G, R) with a structure of R-algebra and we denote this algebra by
Hr(G) and call it the Hecke algebra.

An R[G]-module V is smooth if Stabg(v) = {g € G | g- v = v} is open in G for all
v € V. We denote by Repr(G) the category of smooth R[G]-modules, also called smooth
representations of G. In an arbitrary R[G]-module V, one can consider the smooth
vectors V' i.e. the subspace of v € V such that Stabg(v) is open. Then V +— V'
is a functor, which is left-exact but not right-exact. For V' € Repp(G), we define its
contragredient V'V € Repyr(G) by VV = Hompg(V,R)>®. Let H be a closed subgroup
of G, we define a functor Ind% : Repgr(H) — Repp(G) where for ¢ € Repp(H), we
associate the space Ind% (o) of functions f : G — o such that f(hg) = o(h)f(g) and
f is smooth, endowed with the smooth G-action g - f(¢') = f(¢'g). We also define the
subfunctor ind% of Indg by moreover requiring that f has compact support modulo H.
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For n € N, we denote by (, € C the usual primitive n-root of unity i.e. (, = X
If there exists a non-trivial smooth (additive) character ¥ : FF — R*, then necessarily
the characteristic £ of R is different from p. Moreover R must contain enough p-roots or
p-power roots of unity. Let Z[(ye] = UpZ[(,x] and let

Z[5, Gpee] if char(F) = 0;
A =
Z[%, ¢p]  if char(F) > 0.

Then there exists a non-trivial character ¢ : F' — R* if and only if R can be endowed
with a structure of A-algebra. We always assume R satisfies this condition.

1. THE HEISENBERG REPRESENTATION

The Heisenberg group H(W,(, )), or simply H, is the set W x F' endowed with the
product topology and the group law

/
(w, ) (w,¥) = (w+w',t+tf+<"“”’2"~”>>.
We identify F' with the centre of H via the isomorphism of topological groups ¢ — (0, t)
and identify W with the subset W x {0} of H via the homeomorphism § : w — (w,0).

1.1. We generalise the Stone-von Neumann theorem [MVW87, Chap 2, Th 1.2] to the
modular setting. Recall that R is a coefficient field such that there exists a non-trivial
smooth character ¢ : F' — R, so the characteristic £ of R has to be different from p.

Theorem 1.1. Let ¢ : F' — R* be a non-trivial character. Up to isomorphism, there
exists a unique irreducible representation (py, S) € Repr(H) with central character 1.

Proof. The proof is the same as [MVW87, Chap 2, Th 1.2]. We recall its main ingredients.
A first candidate is ind% () which has the right central character, but it fails to be
irreducible. We can construct larger subgroups than F' so that the induced representation
is irreducible, as we now explain. Let A be a closed subgroup of W and define its
orthogonal as At = {w € W | Va € A, ¥({(w,a)) = 1}. The arguments in [MVWS7,
Chap 2, 1.3] are still valid in the modular setting, so we obtain:

Lemma 1.2. We suppose that A is self-dual i.e. A= AL. Then:

a) there exists a smooth character 4 of the subgroup Ay = A x F of H whose
restriction to F is 1 ;

b) for all smooth characters ¥z of A extending 1, the compact induction inde (¥4)
is irreducible.

As a result of this lemma, there exist irreducible representations (py,S) of H with
central character 1. They enjoy very explicit models thanks to these self-dual subgroups,
such as Lagrangians and self-dual lattices.

To show uniqueness, we follow [MVW87, Chap 2, Lem 1.5 & 1.6] whose proofs rely
on the inversion formula for the Fourier transform, which is still valid in the modular
setting [Vig96, 1.3.10]. This leads to:



MODULAR WEIL REP. AND COMPATIBILITY OF CUSPIDALS WITH CONGRUENCES 7

Lemma 1.3. Let (py,S) € Repr(H) be irreducible with central character 1. Then
Py ®R py =~ indf (1) in Repp(H x H).
The uniqueness of (py, S) is a consequence of this lemma as indf (¢) is py-isotypic. O

1.2. For ¢ a non-trivial character, we call the unique isomorphism class (py, S) above
the Heisenberg representation associated to . By extension, any representation in this
unique class is also called the Heisenberg representation associated to .

The representations S4 = inde (14) in Lemma 1.2 provide explicit models of the
Heisenberg representation associated to 1. They are particularly important when A is
a Lagrangian (Schrodinger model) or A is a self-dual lattice (lattice models when F' is
local non-archimedean).

1.2.1. Schridinger model. Let W = X &Y be a complete polarisation. Then X is a
self-dual subgroup of W. Let Sx = ind)ng (x) where ¥ x(x,t) = 1(t) is a character of
Xug = X x F. The restriction to Y induces an isomorphism Sx ~ C2°(Y) where the
action on the right-hand side is given for h = (wx + wy,t) € H and f € C°(Y) by

polf 1y € Y s () + 5wy wx) + ) f(y -+ wy) € B

1.2.2. Lattice model. Let F be local non-archimedean. Let A C W be a self-dual lattice.
Such lattices always exist according to [MVW87, Chap 2, 1.4 (2)]. By Lemma 1.2, we
can extend v as a character ¥4 of Ay = H x F and set S4 = indﬁH (104). The restriction
to W C H induces an isomorphism between S4 and the functions in C°(W) satisfying

fla4+w) =vYa({w,a))f(w) , for all a € A and w € W.
The action of h = (w,t) € H on f € C°(W) as above is given by

pulh) ! = 90 (' w) ) 70 +w),

1.3. We generalise to the modular setting a few classical properties — which appear
in [MVW87, Chap 2, 1.6 & 1.8] — of the complex Heisenberg representation. If A is a
self-dual lattice in W, we set S4 = inde (4) where 14 extends .

Proposition 1.4. Let py, be the Heisenberg representation associated to 1.
a) The representations pT\Z and py—1 are isomorphic.
b) The representation py is admissible, absolutely irreducible and satisfies Schur’s
lemma i.e. Endgim(py) = R.
c) Any smooth representation of H with central character ¢ is semi-simple.
d) Let:
o (Wi, (, )1) and (Wa,(, )2) be two symplectic spaces over F';
o W =Wy & Wy their orthogonal sum;
o HWy,(, )1) and H(Wo,( , )2) the associated Heisenberg groups;
° p}p and pi the respective Heisenberg representations associated to 1.
Then the representation pllb QR pi € Repr(H(W,(, ))) can be identified with the
Heisenberg representation associated to i in the following model:

(w1 + w2, 1) = D (t) x (py((w1,0)) @ pf((w2,0))).



8 JUSTIN TRIAS

Proof. a) Both are irreducible and have central character ¢!, we apply Theorem 1.1.
b) Because pl\z ~ py-1, we also have (pZ))v ~ py. Therefore py, is reflexive, so py, has to be
admissible. By compatibility of the induction with scalar extension, the representation
S4®pr R € Repp/(H) is the Heisenberg representation associated to ¢/ : F — (R)*
obtained by composition. This implies that p, is absolutely irreducible by taking R’ = R
an algebraic closure of R. The representation py, is admissible and absolutely irreducible,
it satisfies Schur’s lemma by [Vig96, 1.6.9].

¢) From Lemma 1.3, the representation ind# (1) is py-isotypic. In the category of rep-
resentations with central character v, the latter indf;] (¢) is projective, therefore py
is projective as well. We deduce that py is a progenerator of the category and since
Endgg (py) = R by b), the category is semi-simple by Morita equivalence.

d) Set Hy, Ho and H for the groups appearing. We have a surjective group morphism

H1><H2 — H
((w1,t1), (wa,t2)) — (w1 +we,t; +t2)

whose kernel is {((0,t),(0,—t)) | t € F'}. The representation p}p ®R pfp factors through
this group morphism, so it defines a representation of H. By taking compatible complete
polarisations W7 = X7 @Y7 and Wy = X5 @ Y5, we see that

deixF(l/’Xl) QR deixF(l/’Xz) = md()élxng)x(xzxp) (Yx; ®RVx,) ~ indxy p(Yx).
Therefore p%b QR pf/, € Repp(H) is the Heisenberg representation associated to . O

1.4. We describe the change of models in the Heisenberg representation associated to .
Let A1 and A5 be self-dual subgroups in W. As Op is local, principal and complete, the
subgroup Aj + Az has finite index in a closed subgroup of W by [Vig96, I.C.5]. Therefore
A + Aj is closed itself, so (A3 N Ay)t = A; + Ay, which improves [MVWS87, Chap 2,
Rem L.7]. Let ¥4, and 14, be characters restricting to v, then we have the following
explicit formula to construct an intertwining operator between S4, and S4,, also called
a change of models:

Proposition 1.5. Let pu be a Haar measure of Ay g N Ag g\ A2 g with values in R. Let
w € W satisfying ¥ a, ((a,0))v4,((a,0))™t = w({a,w)) for all a € A1 N Ay. Then the
map La, Ay puw associating to f € Sa, the function

Tay Ao ] - h— Y, () f((w, 0)ah) du(a)
A, aNAz g\A2 i

s an isomorphism of representations in HomR[H](SAl, Sa,) >~ R.
Proof. Same proof as [MVW87, Chap 2, Lem 1.7], plus Proposition 1.4 b). O

The expression of the intertwining operator becomes simpler when 14, (a,t) = ¥(t)
and 14, (a,t) = t, in which case w = 0 works. We can always choose the characters ¢4,
and 14, of this form provided p # 2 or A; and Ay are both Lagrangians. In this case,
we simply obtain 14, 4,, € Hompgg](Sa,,Sa,) where

Iay agpuf i h— f((a,0)h)du(a).
AlﬂAQ\AQ
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2. THE R-METAPLECTIC GROUP AND MODELS OF THE WEIL REPRESENTATION

2.1. Let ¢ : F — R* be a non-trivial character and let (py, S) € Repr(H) be a model
of the Heisenberg representation. The group Sp(WW) acts on the Heisenberg group H via
GxH — H
(ga (’U),t)) = g (’U),t) = (gw7t) .
This action fixes the centre of H and therefore preserves the isomorphism class of the
Heisenberg representation. In other words, for g € Sp(W), the representation (pf/),S)
defined by pi(h) = py(g~! - h) is another model of the Heisenberg representation as-
sociated to ¢. Theorem 1.1 ensures p, and pi are isomorphic. Therefore there exists

M, € GLg(S), which is unique up to a scalar thanks to Proposition 1.4 b), such that
My € Hompyg)(py, p}) i-e. for all h € H we have

Mypy(R)M, " = pl(h).
Assume we have fixed M, as above for each g € Sp(W). We then obtain a projective
representation og of Sp(WW') which does not depend on the choice of the M,’s via

g € Sp(W) — RED(M,) € PGLR(S).

We can lift og to an actual representation of a central extension of Sp(W) via the fibre
product construction. Indeed, we consider

—~R w. ,
Spy.s(W) —== GLg(S)

Sp(W) —=> PGLg(S)

~R
where Sp,, ¢(W) = Sp(W) XpaLy(s) GLR(S) is the fibre product of the group morphisms
og and RED above PGLE(S). The group morphisms pg and wy, g above are respectively
the first and second projections.

Definition 2.1. We call (wy g,5) the Weil representation associated to 1 and S.

The following proposition is rather straightforward, using Proposition 1.5 and the fact
that isomorphisms of central extensions are parametrised by characters and the group
Sp(W) is perfect, unless Sp(W) ~ SLy(F3).

—~R
Proposition 2.2. The group Spy, ¢(W) is a central extension of Sp(W) by R* i.e.

1= R 5 8p; (W) %5 Sp(W) — 1

is an exact sequence where ig : X — (idy, Aidg) has central image.
If S and S" are two models of py,, and ¢ : S — S’ is an isomorphism of representations,
the isomorphism of central extensions

—~R —~R
Spy,s(W) —  Spy o(W)
(9. M) = (9,6M¢™")
does not depend on the choice of ¢. We denote it by ®g g .



10 JUSTIN TRIAS

Ezxcept in the case F' = F3 and dimpW = 2, there a unique isomorphism of central

—~R —~R
extensions between Sp,, g(W) and Spy, (W), which is given by ®g s
—~R
In other words, the isomorphism class of Sp,, 4(W/) as a central extension is independ-
ent of S and all such central extensions are canonically identified thanks to ®g .

Definition 2.3. We call this isomorphism class of central extensions the R-metaplectic
group. By extension, any group in this isomorphism class is an R-metaplectic group.

2.2. Let (pg,Ind¥ (1)) be the representation where H acts on the right-hand side of
functions. For all self-dual subgroup A in W, we can embed the model of the Heisenberg
representation (py, Sa) = (py, ind ., (¥4)) as a subrepresentation of pg.

The action of g € Sp(W) on H gives an isomorphism

Iy indf{ (va) — indngH(ng)

f = g-f
where g- f:h+— f(g7'-h) and ¢% 1 a € gAy > a(g~' - h) € R*. Then for all h € H
Iyopa(h) = pa(g™" - h) o I,
Composing with the change of models Ig4 4, of Proposition 1.5, we obtain
I w
Sa ngA 9 Ag Sa,
which satisfies Iga 4w © Iy 0 pa(h) = pa(g~-h)o Iga A w01y for all h € H. Hence
~R
(97 IgA,A,,u,,w © Ig) S Spw,,S'A (W)
In particular Iy 4, is a multiple of the identity for all g € Stab(A) N Stab(v4) i.e.
—~R
g € Stab(A) N Stab(va) = (g, 1y) € Spy s, (W)
is a group morphism.
2.3. Here are the most commonly used explicit models of the Weil representation.

2.3.1. Schrodinger model. Let X be a Lagrangian. We consider the Schrodinger model
Sy, x associated to ¢ and X. We recall that the character ¢ x is trivial on X.
Let P(X) be the parabolic in Sp(W) stabilising X. Then as we have just remarked,
the following map is a group morphism
~R
Choosing a complete polarisation W = X @Y, we identify Sy x with C°(Y'). Then

Lf + (,0) > w5 @ b (@ 0), forp= | ¢ 0 | € POY)

It provides an embedding of M (X) and N(X) in the R-metaplectic group.
We also have

o R 0 c
(90T o 13) € oL, (W), torg = | (S0 ¢ | € Spm),
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where Iy, x ;. is simply a Fourier transform, so the composition is given by

Iy o Ipf + (4,0) /X (@, y) F( w)dpix ().

2.3.2. Mixed Schridinger model. Let 0 C X C W be totally isotropic. Let Y be a totally
isotropic subspace in duality with X, we have a decomposition W = X ® W° @Y where
W70 is the orthogonal of the symplectic subspace X @Y. Let (,02}7 S9) be the Heisenberg

representation of H(W?) associated to ¢. We realise the Heisenberg representation of
H(X &Y) on the Schrédinger C2°(Y') associated to ¢ and X. Proposition 1.4 ensures
that S = C°(Y) ®x SY is a model of the Heisenberg representation of H (W) associated
to 1. Let P(X) be the stabiliser of X in Sp(W) and j : P(X) — Sp(W?) the projection
to the symplectic part of the Levi M (X) of P(X). We have a natural section of j via
the inclusion of Sp(W?°) in M(X). This embedding induces an isomorphism of groups
p € P(X) — (put,u) € Ker(j) x Sp(W?).

Lemma 2.4. We have an isomorphism of groups
NR ~ _
P(X) Xgpwo) Spy,s0(W?) = ps (P(X))
(p,’l]) = (p7 Ip’uf1 ®w'¢),50 (ﬁ))
where the fibre product on the left-hand side is given by j and pgo.

In particular we can consider the action of Ker(j) via the group morphism
. —~R
p € Ker(j) = (p, I, ® Idgo) € Spy, (W).

We give the actions of subgroups/subsets of interest. Let f € C°(Y)® S = C(Y, SY).
e For all p = (a,u) € M(X) = GL(X) x Sp(W?), we have

(p, @) - f 1y = wy go(@) - (f(a*y)).

Idx 0 s
e Forall p= 0 Idyo O € Sp(W), we have
0 0 Idy

(p, (Lo, [d50)) - £y = (3 (59, 9)) ().

Idx v 0
e For all p = 0 Idyo —v* | € Sp(W), we have
0 0 Idy

(p, (Idyo,Idgo)) - f 1y = pO((v*y,0)) - (f(¥)).

2.3.3. Lattice model. Let I be local non archimedean and assume p # 2. Let A be a
self-dual lattice in W. Since p # 2, we can set ¥4(a,t) = () and therefore choose
w = 0 in Proposition 1.5. For all g € Sp(W), the set A/gA N A is finite and we endow
it with the counting measure u. An explicit computation gives

Tpaauo Tpf £ (@,0) = 3 (L (o w) (g™ (a+w),0)).

ac€A/gANA
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If K is the stabiliser of A in Sp(W¥), we have a group morphism
k€K (ki) € Spyg, (W)
which is a smooth representation k € K — wy g, ((k,I;)) = I, € GLR(Sa).

Remark 2.5. The lattice model also exists when p = 2, except that the character 14
can’t be extended trivially to A and the formulas usually become inoperable.

2.3.4. Another model. Let (py,S) be a model of the Heisenberg representation of H
and let g € Sp(W). For all s € S, the function

w, g~ w)

weW»—>w(< 5

is invariant under Ker(Idy —g~1) 4.e. factors through a function on W/Ker(idy —g~1).

)y ((Idw — gil)w,O)s es

Lemma 2.6. Let g € Sp(W) and let iy be a Haar measure of W/Ker(Idw — g~ 1).
o If F' is finite, we define M|[g] € Endr(S) by

(w, g~ 'w)
W/Ker(l—g—1) 2

e If F is local non-archimedean, for all lattice L in W/Ker(Idy — g~ '), define

Mlg]: s )oy((ldw — g~ 1w, 0))s dpg(w).

w 71w
Milg) s [ (Lo (1w — g, 0)s digs

For all s € S, there exist a lattice Ls and an element M|[g|s € S such that
Mi[g]s = M|g]s for all lattices L O Ls.
In this sense Mp[g]s is independent of L and Mlg] : s — M|[g]s is in Endg(S).
Then M[g] € Homp (py, ) i.c. (g, M]g]) € Spy 5(W).

Proof. Same proof as [MVW87, Chap 2, Lem II.2]. Note that, for L a lattice in W, it is
elementary to check that the following map belongs to Homp,x r(py, pi)

sH/Lpf;}(w,O)*lpq/,(w,O)sdugw.
(w, g~ w)
2

Lemma 2.7. Let g1, g2 € Sp(W). Assume that g1g2 = g2g1- Then
M(g1]M [g2] = M{g2]M{g1].

Furthermore pf,((w, 0)) " py((w, 0)) = 4( ou((ldw — g™V, 0)). O

Proof. Same proof as [MVW87, Chap. 2, Lem. IL.5]. O

3. PROPERTIES OF THE R-METAPLECTIC GROUP AND THE WEIL REPRESENTATION

Let S be a model of the Heisenberg representation associated to ¢ : F' — R*.
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3.1. If G is a group, we denote by [G, G] its derived subgroup. We have the following
properties for the R-metaplectic group:

—~R —~R
Theorem 3.1. Let Spy, s(W) be the derived subgroup of Sp,, (W).
a) If F is finite, or if the characteristic £ of R is 2, there exists a section of pg

Sp(W) = Spy. ().

Ezcept in the exceptional case F' = Fs and dimpW = 2, this group morphism is
unique. This embedding of Sp(W) induces a group isomorphism

Spy.5(W) = [Sp(W), Sp(W)].
Here [Sp(W),Sp(W)] = Sp(W), except in the exceptional case.

b) If F is local non-archimedean and ¢ # 2, such a section of ps does not ezist.
Howewver, the derived subgroup fits into the exact sequence

1 {£1} 5 Spy o(W) 23 Sp(W) — 1.

—~R —~R
The group Spy, (W) is the unique two-fold cover of Sp(W') contained in Sp,, (W ).
—~R
c) The group Spy, (W) is perfect, except in the exceptional case.

Proof. a) If such a group morphism ¢ exists, it induces an isomorphism of central ex-
tensions _
(9,A) € Sp(W) x R* = 0(g)is(A) € Spy,s(W).

Since two such isomorphisms differ by a character, we deduce that ¢ is unique, ex-
cept in the exceptional case. Moreover, the derived subgroup of the left-hand side is
[Sp(W),Sp(W)]. There remains to prove the existence of o. In the finite case, it is a
consequence of [Ste62, Th 3.3] as the symplectic group is its own universal covering in the
sense of [Moo68|. This means that any central extension of the symplectic group splits.
We deal with the non-archimedean local field case when ¢ = 2 in the next paragraph.

b) Suppose F' is local non-archimedean. When R = C, there exists by [Wei64] a
character Ac — C* of a central extension Ac of Sp(W) by C* whose kernel is gf)(W),
the unique non-trivial central extension of Sp(W) by {+1}. The latter group is perfect.
It is the derived subgroup of A¢. This result was generalised in [CT13, §5] when R is an
integral domain of characteristic £ # p and such that there exists a non-trivial character
¥ : F x R*. In particular our coefficient field satisfies these assumptions. We deduce
there exists a character Arp — R of a central extension Ar of Sp(W) by R* whose
kernel is é?)(W) if £ # 2 and Sp(W) if £ = 2. These two groups are perfect. We refer to
[Tril9, Ann A.2] for details about the identification well-known of the experts between
Apg and the R-metaplectic group.

We obtain a character é?)f; s(W) — R* whose kernel is a perfect group, and contains
the derived subgroup, therefore it is equal to the derived subgroup. When ¢ = 2, this
group is Sp(W) and the same argument as in the finite case shows that the section of
ps thus obtained is unique. When ¢ # 2, this is the non-trivial two-fold cover of Sp(W).
Moreover the R-metaplectic group does not contain Sp(WW') as a subgroup according to
[CT13, Th 5.4], so any two-fold cover of Sp(WW) in the R-metaplectic group is unique.

¢) The symplectic group and its non-trivial double cover are known to be perfect. O
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We endow R with the discrete topology. Let S be a vector space over R. We endow
it with the discrete topology. The compact-open topology on GLRr(S) is generated by
the prebasis S; ¢ = {g € GLg(S) | gs = &'} for s and s’ running over S. Then, a
representation .S of a topological group G is smooth if and only if the associated group
morphism G — GLg(S) is continuous.

Proposition 3.2. The R-metaplectic group SAf)fZ’S(W) is the fibre product in the category
of topological groups of the continuous morphisms og and RED. It is a topological sub-
group of Sp(W) x GLg(S) and a topological central extension of Sp(W') by R*. Moreover
the isomorphisms ®g g above are isomorphisms of topological central extensions.

Proof. When F is finite, the topology is discrete, so the groups appearing are all topo-
logical groups and all maps are continuous. Let F' be local non-archimedean. First of
all, the map RED is continuous by definition of the quotient topology.

There remains to prove that og is continuous. Note that ®g ¢ induces an isomorphism
of topological groups M € GLg(S) — ¢M¢p~—t € GLE(S’), therefore it is enough to find
one S such that og is continuous since ¢os(g)p~! = o5 (g) for g € Sp(W).

Lemma 3.3. Let L be a self-dual lattice in W and let Sy, be the lattice model associated
to L and 1. Then og, is continuous.

Proof. Let K be the stabiliser of L in Sp(W). It is compact open subgroup. Let k € K
and consider the linear map

Ni: indf (vr) — indf, (%)

i (
f = ke f

where k- f: b f(k~1-h) and ¥ : (1,) = (k™ 11,1)).
When p # 2, we can choose 17, such that ¢y, (I,t) = ¥(t). Thus ¥ =y forallk € K
and Ny € GLR(S) satisfies

Niopy = Pi_l o Ng,
or equivalently Nkopf; = pypoNi. Therefore (N, Sp) where N : k — Ny, is a representation
of K lifting og, in the sense that og(k) = RED(N) for all £ € K. Moreover N is a
smooth representation because the action of k € K on f € Sp ~ C°(W) is given by
k- f(w) = f(k~'w) and is easily checked to be smooth.

When p = 2, the character i can’t be extended trivially to L x {0}. However, there
exists n € N such that @i L x Ker(¢) is a subgroup of Ker(¢)). Fix such a n and let K,
be the kernel of the reduction morphism K — GL(L/w}L). Then the same arguments
apply to K, namely N : k € Ky — Nj € GLg(SL) which is smooth and lifts og, .

We have shown there exists a smooth representation [V lifting og, of a compact open
subgroup K of Sp(W) i.e. g, = RED o N. Since N and RED are continuous, the group
morphism og, is continuous on K. This implies g, is continuous on Sp(W). O

Therefore éf)f; (W) is the fibre product in the category of topological groups of the
continuous group morphisms og and RED above PGLg(S). By definition, this fibre
product is a topological subgroup of the product Sp(W) x GLg(S). As we already
remarked, the isomorphism of central extensions ®g g/ are homeomorphisms. O
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~R
Because the second projection wy s : Sp,, ¢(W) — GLg(S) is continuous, we obtain:
Corollary 3.4. The Weil representation (wy s,S) is smooth.

3.2. The first projection pg is also continuous and defines a fibre bundle:

Proposition 3.5. The map pg : %SS(W) — Sp(W) has local trivialisations and this
turns the R-metaplectic group into a trivial fibre bundle of basis Sp(W') and fibre R*.

Proof. Since the base Sp(W) is locally profinite, any fibre bundle over Sp(W) is trivial.
So we simply show that pg admits local trivialisations since the fibres of pg are all R*.
In the proof of Lemma 3.3, we found a continuous group morphism N : K — GLg(S)
with K a compact open subgroup of Sp(W). As the embedding K < Sp(W) is clearly
continuous, the universal property of the fibre product provides a continuous embedding
of K in the R-metaplectic group inducing a local trivialisation K x R* ~ pgl(K ). As
pg is a continuous group morphism, it admits local trivialisations everywhere. O

We deduce that:

—~R
Corollary 3.6. The R-metaplectic group Spwys(W) s a locally profinite group and its
—~R
derived subgroup Sp,, ¢(W') is open.

Proof. We use the trivialisation K x R* ~ pgl(K ) from the previous proof to obtain an
embedding of K in the R-metaplectic group as an open subgroup. Since this image of K
is open, and compact, there exists a basis of neighbourhood of the identity made of open
compact subgroups. Note that the quotient of the R-metaplectic group by its derived
subgroup is the discrete group R*/{+£1}. Therefore the derived subgroup is open. [

3.3. Let X be Lagrangian in W. Let Sx be the model of the Heisenberg representation
associated to ¢ and X. The formulas of the Schrédinger model give:

Proposition 3.7. We have pg)l((P(X)) ~ P(X) x R*.

In particular any subgroup of P(X) is split in the R-metaplectic group. Furthermore,

similarly to [MVW&87, Chap 2, Lem I1.9], there exists a unique splitting of N(X) in the

R-metaplectic group valued in the derived subgroup and normalised by P(X). Moreover:

Proposition 3.8. Let F' be local non-archimedean. Let A be a self-dual lattice in W.
—~R

The natural embedding k € K > (k,Ix) € Spy,g,(W) of the open compact subgroup

K = Stab(A) N Stab(v4) of Sp(W) has image in Spf;’SA(W).
Proof. Same proof as [MVW87, Chap. 2, Lem. I11.10]. O

—~R
3.4. Let Spy, (W) be the R-metaplectic group associated to ¢ from Definition 2.3. Let S
be a model of the Heisenberg representation associated to . By definition, there exists

—~R
an isomorphism of central extensions ¢g between Mpfj(W) and Spy, ¢(W). In addition
g is unique, unless Sp(W) ~ SLy(F3). For any other model S/, we fix isomorphisms

—~R —~R
between Sp,, (W) and Sp,, ¢/(W) by setting w5 = @55 0 5.
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~R
Definition 3.9. The representations (wy, s0ps, S) and (wy, sropsr, S") of Repg(Sp,, (W))
are isomorphic and we call their isomorphism class the Weil representation associated
to . By extension, any model in this isomorphism class is also the Weil representation.

Remark 3.10. In the exceptional case, the identification (g is not unique. Therefore
the Weil representation depends on the identification given by ¢g.

3.5. Let wﬁw, or simply wf;”, be the Weil representation associated to .
Proposition 3.11. The smooth representation wff s and admissible.

Proof. We first recall that wﬁ is smooth by Corollary 3.4. We now prove admissibility.
Let F' be local non-archimedean and let A be a self-dual lattice in W. By definition
Sa = indE‘VXX],fF (1p4) where ¥4 extends ¢ to A x F. Let K be a compact open subgroup
in Stab(A). For all f € SK, let L be a lattice in W such that f is L-bi-invariant, i.e.
f(l+w,0) = f(w,0) for all I € L and all w € W, and for all k € K and all [ € L, we
have 14(k~'1,0) = 1. We assume L C A, up to replacing L by L N A. Then, for all
[ €L andall we W and all k£ € K, we have

F((w,0) = f((w+1,0) = fF(k™ (I +w,0)) = f((k_ll,%<k_1w7k_ll>)(k_1w,0))

= DAl L0, ) (7 (w,0))

1
= UG5 {w, ) f((w,0)).
We deduce that supp(f) is included in 2L+ where L' appears in Lemma 1.2. The vector
space SX has dimension at most |(A x F))\(2L+ x F)/K]|, which is finite. O

—~R ~R —~R
3.6. Let Sp,, (W) be the derived subgroup of Sp,,(W). Let Z be the centre of Sp,, (W)
and let Z' = {z € Z | 22 = 1}. The quotient morphism induces an isomorphism

—~R —~R

So (W) /Sby (W) = 2/2 = R* {1},
Note that the square map A € R* — \? € R* factors through R*/{£1} — R*. We let
X2 é{)i(W) — R*/{£1} — R* be the composition with the quotient morphism. In

—~R
particular x?(§A\) = A? for § € Spy, (W) and X € R*.
The next two propositions are consequences of Proposition 1.4, using a) and d).

~R
Proposition 3.12. We have (wf;)v o~ wﬁ,l ®x? in Repp(Spy, (W)). By restricting to
the derived subgroup, we obtain

. —~R
(wfj)v ~ wf;_l in Repy(Sp, (W)).

Proposition 3.13. If W = W, @ Wy is an orthogonal sum, there exists a unique (resp.
canonical, in the exceptional case) group morphism

. R R i
iwy,Wa * SPy g, (W1) X Spy, g,(Wa2) — Spy, s(W)
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which lifts the embedding Sp(W1) x Sp(W2) — Sp(W) and commute to the fibre product
projections. Its kernel {((1spwy), Alds,), (Ispwy), A Hds,)) | A € R*} is isomorphic to
R* embedded anti-diagonally. We obtain by pullback a representation

. —~R —~R
wz}p%,w o iwy,,w, € Repp(Spy g, (W1) X Spy, g, (W2))

. . . . R R
which is isomorphic to Wap 1y ® Wep 7y -

4. NON-NORMALISED WEIL FACTOR

We define in this section a non-normalised version of the Weil factor. Our construction
has the benefit to be more elementary and more direct than the construction of the usual
Weil factor. We then relate our factor to the usual Weil factor of [Wei64, Per81, RR93]
when R = C, and to its generalisation in [CT13] to coefficient fields R containing a
square root of q.

4.1. Let X be a vector space of finite dimension m over F. Since the pro-order of X is a
power of p and the characteristic £ of R is different from p, there exists a Haar measure
w of X with values in R [Vig96, 1.2.4]. We recall that a quadratic form @ over X is non-
degenerate if its radical rad(Q) = {z € X | Q(z+y) —Q(y) —Q(xz) =0, for all y € X} is
reduced to 0. Assume there exists a non-trivial smooth additive character ¢ : FF — R*.

Proposition 4.1. Let Q) be a non-degenerate quadratic form over X. There exists a
unique element (1 o Q) € R* such that for all f € C°(X) we have

[ [ 1= 2w@@)du@)duty) = 2,00 Q) [ f@)duta).
XJX X

Proof. It is elementary to check that the linear form
Wit ecrX) s [ [ fy-uQ@)du)duly) € B

is a (non-zero) Haar measure of X with values in R. By uniqueness of the Haar measure
[Vig96, 1.2.4], there exists a unique element ¢ € R* such that y' = cpu. O

As the notation suggests, the factor Q,(1 o Q) depends on p. We now extend the
definition of our factor to degenerate quadratic forms. Note that any quadratic form Q
over X induces a non-degenerate quadratic form Q,q over Xg = X/rad(Q).

Definition 4.2. Let Q be a quadratic form over X. For u a Haar measure of Xg with
values in R, we call ,(¢ 0 Q) = Q,(¢) 0 Qpngq) the non-normalised Weil factor.

4.2. Before reviewing some properties of this factor, we need to introduce a few nota-
tions. If X’ is a vector space isomorphic to X, we denote by Isop (X, X’) the F-linear iso-
morphisms between X and X’. We write Autg(X) for Isop(X, X). If X* = Homp(X, F)
is the dual of X, the set Isop(X, X*) has a natural involution p — p* given by duality
i.e. p*(z) 1y € X — p(y)(z) € R for x € X. The symmetric morphisms are the fixed
point for this operation and we denote them by

Iso?™ (X, X*) = {p € Isop(X, X™) | p=p*}.
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If p € Iso™ (X, X*), we define a quadratic form @, over X by setting Q,(z) = p(z)(x)
for x € X. The sets of linear isomorphisms aboove inherit a natural locally profinite
topology from the finite dimensional vector space Homp (X, X').

Let p be a Haar measure of X with values in R. For ¢ € Autp(X), the measure
¢-p=pop ! is a Haar measure of X. It is a scalar multiple of y by uniqueness of the
Haar measure. Denote by |¢| € R* the unique scalar such that ¢ -y = |[¢|u. Then |¢|
does not depend on the choice of u, we call it the modulus of ¢. For any compact open
subgroup K of X, we have

|¢| — VOI¢'M(K) — :u’((bil(K))
vl (K) — u(K)

Moreover the modulus ¢ € Autp(X) — |¢| € R* defines a smooth character. We also
have |¢| = |detp(¢)|r for ¢ € Autp(X) = GLp(X). In particular |¢| € ¢Z.

We can define a modulus map on Isop(X, X*) in the following way. Let p be a Haar
measure of X with values in R. Let u* be its dual measure i.e. the unique Haar measure
of X* such that the Fourier transform

. e} [e.e] *
Fu i G JSX) : Ccfi)]f ) where F,,f : 2™ — /X (x*(x)) f(z)du(z)

has inverse

Fae i CR(X7) o CX(X) | e

h > Fuh where F«h : x — . (—x*(z))h(x")dp* (z*).
For p € Isop(X, X*), the measure p-u is a Haar measure of X*, so there exists |p|, € R*
such that p - u = |p|,p* by uniqueness. As the notation suggests, the modules |p|,, does
depend on the choice of p, but only up to a square in R*. For any compact open
subgroup K of X*, we have

‘p’ — VOIp'M(K) — M(p_l(K))
T Vol (K)  pr(E)
Moreover p € Isop(X,X*) — |p|, € R* is locally constant. This modulus map is
compatible with that of Autz(X) in the sense that |po ¢|, = |p|, - |¢| for ¢ € Autp(X)
and p € Isop(X, X™). It is also invariant under duality i.e. |p|, = |p*|,. When K is a
lattice of X, i.e. an open compact subgroup endowed with a structure of Op-module,
we have |p|., € ¢Z.

Proposition 4.3. Let Q) be a quadratic form over X. Let i be a Haar measure of Xgq.
a) If Q is the zero quadratic form, then Q,(¢ 00) = pn({0}).
b) For all A € R*, we have:
Do Q) = Ax Qu(hoQ).
¢) If X' is a vector space of the same dimension as X and ¢ € Isop(X,X’), we
define the quadratic form Qg = Qo o1 over X'. Its radical is ¢(rad(Q)). Then

Qpp( o Qp) = Qu(th o Q).
In particular, if ¢ € Autp(X) preserves the radical of Q i.e. ¢(rad(Q)) = rad(Q),
we have

Qu(v 0 Qp) = [6]7! x Qu(¥ 0 Q).
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d) Let Q1 @ Q2 be the sum of two quadratic form Q1 over X; and Q2 over Xa,
together with Haar measures p1 of (X1)g, and pa of (X2)q, , then

Qm@#g (w © (Ql S Q2)) = Qul (w 0 QI)QM (@/} © Q2)

e) The map p € Iso™ (X, X*) — Qu(¢ 0 Q,) € R™ is locally constant.
f) Suppose R contains a square root of q. Fix q% € R*. Let p € Iso™(X, X*) and

1
set |pli = M(K)q% for K any lattice in X and |p|., = q*. The scalar

Qu(¥poQr,)
w(y o Q%p) = 7;2/)-
pl2
is the usual Weil factor associated to Q%p.

g) Fora € F*, let Q. be the quadratic from Qu(x) = ax?® over F. Let u be a Haar
measure of F'. The scalar

Qu(1 0 Qa)

Qu(w 0 Qp)

does not depend on the choice of . Moreover, for all a and b in F'*, we have

(a,b)p = Qu(1 0 Q1) (¥ 0 Qap) _ Qav 1
’ QMW o Qa)Q#(w © Qb) Qa,IQb,l .

Proof. a) b) c¢) The first two points are direct consequences of the definition of the non-
normalised Weil factor. The third one comes from a change of variables 2 = ¢~ !(z')
which gives Q,(¢ 0 Q) = Q4.,(¥ 0 Qp). When ¢ € Autp(X) preserves rad(Q) then
Q0 Q) = Qo0 Q) = [ 6121 0 Q) by b) and ¢ 1 = |

d) This is a consequence of the compatibility of Haar measures with products of
spaces. Here X7 x X9 = X1 @ Xo and CX(X;) ® CX(X2) = C*(X1 @ X2) is the
canonical isomorphism induced by (f1 ® f2)(z1 @ x2) = fi(z1) fo(x2). Then p; ® pg is a
Haar measure of (X1)g, ® (X2)g, = (X1 ® X2)Q,eq, and we can decompose integrals
accordingly to obtain the result.

e) This follows from the fact that, if f € C2°(X) is fixed, the map

p— /X /X fly — 2)¥(Qp(x))du(x)du(y) is locally constant.

me = € R

1
f) Note that |p|z = M(K)qg does not depend on the choice of K as pug = pug (K)pug
and [ply,e, = prr (K)?[plu and p = p(K)px, so p(K') = p(K)ux(K'). To prove the
link with the classical Weil factor, we use [CT13, Prop 3.3] evaluated at z* = 0, which
gives the Weil factor v of Q1 p 8s the scalar satisfying
2

[ [ H@=210@y @) dnt)dnt) = 7 1ol [ f@)duo)
XJX X
Therefore Q,,(¢ o Q%p) = fy]p]é.

g) The scalar €, ; does not depend on p thanks to b). We first assume that R contains
a square root of ¢. After fixing this square root, we can relate the non-normalised Weil
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factor to the usual Weil factor thanks to f) to obtain

Qo Q) oQa)  wWoQi)wWoQw) (a.b)r

Qu(Y 0 Qu)u(¥oQp)  w(¥hoQa)w(thoQy) ’
where the last equality is a consequence of [CT13, 4.3]. When R does not contain a
square root of ¢, we can adjoin this square root to R and work over an extension R'.

The identity then holds in R’, with all scalars being already in R, so it holds in R too. [

4.3. As opposed to the usual Weil factor, the non-normalised Weil factor is not neces-
sarily trivial on split quadratic forms. It is also not invariant under isometries, though it
transforms in a nice way according to ¢) above. Our preference for the non-normalised
Weil factor comes from the fact that it is more intrinsic than the Weil factor. Indeed,
we only need to be able to define v in order to define €,,(¢) 0 @), whereas the usual weil
factor typically requires on top of that the existence of a square root of ¢. For instance,
if ' =TF3((t)) and R = Q[(3], then iv/3 € R but i and /3 are not in R. We can define
a non-trivial character ¢ : FF' — R* and the scalar w(y) o @}) can take the value 7, but
we will always have Q, (1) o Q) € R. Moreover, unlike §2,,(¢ o Q) when R has positive
characteristic, the definition of w( o @) depends on the choice of a square root of g.

4.4. We now give a product formula for the non-normalised factor when @ is realised
in an orthogonal basis of X. We assume (@ is non-degenerate and B = {vi,..., v} is
an orthogonal basis for (). This choice of basis induces an isomorphism from X to F™
and we denote it by ¢p. We fix a Haar measure up of F. We form the Haar measure
®up of F™ and consider its pullback gbgl - (®up), which is Haar measure of X. We
set a; = Q(v;). The determinant detp(Q) = []a; does depend on the choice of B,
whereas the Hasse invariant hp(Q) = [[;-;(ai,aj)r does not. By combining the points
in Proposition 4.3, we obtain:

Corollary 4.4. We have
Q L(our) (¢ © Q) QdetB @),1 X QMF (1/1 ° Ql)mhF(Q)

Furthermore, if QIdB is the non-degenerate quadratic form associated to the identity in
the basis B, we have for u a Haar measure of X that

Qu(Y 0 Q) = Qe (@)1 X Qu(¥ 0 Quag)hr(Q)-

4.5. We give an interpretation of the non-normalised Weil factor as a way to normalise
the Fourier transform with respect to . This normalisation is more natural because
it only requires that the coefficient field contains the values of i, as opposed to other
normalisations of the Fourier transform which may require some choices — such as the
choice of a square root of q.

Proposition 4.5. Let p € IsoX™ (X, X*) and let i be a Haar measure of X .

a) The Haar measure
Up = Q,u&b © Q%,)_l
does not depend on the choice of .
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b) If %, denotes the convolution product in C°(X) and - the multiplication of
functions, the Fourier transform operator

Fup + [ € (CE(X)xp,) = (96 = /X%b(p(@(U))f(U)dup(U)) € (C2(X), %)

s an tsomorphism of algebras.
c) For all f € C°(X), we have

Fﬁpf =e%f and fipf cx = ef(—x)
where € = Q" 1 (— 1,det(Q%p))F and e? = (-1, —1)?.

Proof. a) Proposition 2.4 b) ensures that p, does not depend on the choice of f.

b) We refer to [CT13, Prop 1.2] to show F,,, is an isomorphism of algebras as the proof
is the same.

¢) Let K be a compact open subgroup in X and K+ = {z € X |Vk € K,y (p(x)(k)) = 1}.
Let 1x be the characteristic function of K. A routine calculation gives

T, Ve = pp(F)p(K4) x 1
We set & = u1,(K)p,(K+). By definition
e = mp(K)pp(K+) = Qu(v 0 Q1) ™% x p(K)u(K™).
Let K' = {z* € X* | Vu € X,¢(2*(u)) = 1} in X*, then

—1 g7
(i) = 0 —

Asw(o Q_%p)w(ﬂ) o Q%p) =1 by [CT13, Prop 3.2], we deduce from Proposition 4.3 f)

Qu(l/J o Q_%p)
Qu(ﬂ) © Q%p) '

Because the two quadratic forms Q_1 p and @1 , can be put in diagonal form in the
2 2

Qu(@o Qfép)Qu(ﬂi o Q%p) = |pl, and € =

same basis B, Corollary 4.4 yields

Qaets(@ 4 )1 hr(Q_1,)
E = X .
QdetB(Q%p)J hF(Q%P)

On the one hand, we deduce from Proposition 4.3 g) and detB(Qiép) = (—1)mdetB(Q%p),
the equality

Qdet (@ )s1
o = O x (1) detis(@1))
QdetB(Q%p)vl 2

m(m—1) m

= Q)" x(-1,-1)p > x (— 1,detB(Q%p))F.
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On the other hand, as (—a;, —a;j)r = (—1, —a;a;)r X (a;,a;j)F, we get
m(m—1)

he(Q_1,) = (=1,(=1)7 = det(Q1,)" ")), x hr(Q1,)

2

(m—1)

= ((L-Dp T x (—Ldet(@)p ! x hr(Q,).

This yields the desired equality for ¢ first, and for €2 then by Proposition 4.3 g).
Regarding the powers of ), , a classical argument consists in first proving it for
characteristic functions of the form 1,4 x and deduce it for all functions in C°(X). O

The previous proposition justifies to make the following definition:
Definition 4.6. We call ¥, the Fourier transform.

4.6. It is not necessarily possible to normalise the Fourier transform in the usual way
with the sole values of 1, i.e. such that it satisfies F2f(x) = f(—x). Let F = F3((t))
and R = Q[(3]. We have ¢ = —1 when |p|, = 3. The classical normalisation requires to
divide by v/3, which does not belong to R. Moreover, when R has positive characteristic,
there is no canonical choice of a square root of ¢, whereas ¥, is defined independently
of any choice. This example echoes Section 4.3 in the context of Fourier transforms.

5. THE METAPLECTIC COCYCLE

5.1. We recall some notations from [RR93] and [Kud94]. Let W = X @Y be a complete
polarisation and fix a basis {ey, ..., e} of X. This determines a dual basis { f1,..., fm}
inY ie (e, f;) = d;i; forall4,5. For S C {1,...,m}, let Xg be the subspace of X
generated by (e;)ics. If ©S denotes the complement of S, then Xcg is a complement of
Xg in X. We use similar notations for Y. Then Wg = Xg @& Yy is a symplectic subpace
of W with orthogonal complement Weg. Let wg € Sp(W) be defined by
N fz ifie S N —e; ifie S

ws(e:) = { e ifigs dws(F) = " g9
For all 0 < j < m, we set w; = wyy ;) and Q; = P(X)w;P(X). The Bruhat decom-
position reads

Sp(W) = ]_[QJ

5.2. Let g € ;. Let p; and po be in P(X) such that g = p1w;p2. Denote by ¢ the
isomorphism between g X N X\ X and w; X N X\X induced by

r€X s ptr €wi X NX\X.
Let @Q; be the non-degenerate quadratic form on w; X N X\ X defined by

Qi) = 3wy, ).

For all Haar measures p on w; X N X\ X, we denote by oy = (o Qj)_l,u the Haar
measure of Proposition 4.5 which normalises the Fourier transform with respect to ¢
and the symmetric isomorphism p : x — (wjz, —).
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Lemma 5.1. The Haar measure on gX N X\X defined by

,Ug = Ql,detx(puoz) X ¢1 : :u‘wj

does not depend on the choice of p1 and ps.
Proof. Let g = piw;p2 = pjw;ph be two decompositions of g € Q;. Then gbfl o ¢} is an
automorphism of w; X N X\ X. We need to check that

O dety (prpa) ¥ 1det(d7" 0 0)|F = 1 dety (1)

However, according to [RR93, Lem. 3.4], we have
det(¢7 " 0 ¢1)? = detx (p; 'P1popy )

because pl_lp’lep’zpz_l = wj;. We now apply Proposition 4.3 to obtain

—1
Ql,det(¢1_10¢>’1)2detx(plpg) = |det(¢1 " 0 ¢)[F x Q1 detx (pi1p2)-
Therefore pg does not depend on the choice of p; and ps. O
5.3. Let g € Q;. Let p; and py be in P(X) such that g = piw;ps. We define z(g) as
the image of detx (pip2) in F*/F*2. Then x(g) is well-defined and does not depend

on the choice of p; and pa [RR93, Lem 3.4]. Moreover, we have z(wg) = 1 for all
S C{1,...,m}. By Proposition 4.3 g), we easily obtain:

Corollary 5.2. For all g € Sp(W) and all p € P(X), we have

tigp = (2(p), £(9))F X Qi ety () X Hg
and
tpg = (2(p), (9))F X Q1 detx (p) X Pp * Hg
where ¢p 1 x € gX N X\X — pT € pgX N X\ X.
5.4. Recall that pg, : SBS,SX (W) — Sp(W) is the canonical projection associated to the

Schrodinger model Sy x and that the intertwining operators 14, 4, .. are the change of
models. We define a section of pg, thanks to the previous measures via

—R
og:9€Sp(W)—o(g) = 9X,X 19,0 © Iy € Sp%SX(W).
We denote by ¢ the 2-cocyle associated to this section i.e.
&:(g,9") € Sp(W) x Sp(W) =+ a(g)a(g')o(gg) ™" € R*.
Lemma 5.3.
a) For all g € Sp(W) and all p € P(X)
&(g,p) = é(p,g) = ¢(p~ ', 9) = (2(p), z(9))F-
b) For S and S" in {1,...,m}, we setl =|SNS’'|. Then

1(i+1)
é(’wg, ’UJS/) = (_17 _1)F 2
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c) Let S C{1,...,m} and W = Wg + Weg, so that the subgroup of Sp(W)
Gs ={g €Sp(W) | g(Ws) C Ws and g|w, = Idwg}

is canonically isomorphic to Sp(Weg) via the restriction to Weg. We use similar
notations for ¢S. Then for all g € Gg and all g’ € Geg, we have

&(g,9) =g, 9) = (2(9), 2(d)F.
Proof. a) As a(p) = Q0 et (p) X Ip, we deduce from Corollary 5.2 that

a(pg) = (x(p), z(9))r x o(g)o(p) and o(pg) = (2(p), z(9))r x o (p)o(g)-
Therefore &(p, g) = ¢(g,p) = (z(p), 2(g))r. Moreover z(p) = z(p~"') by definition.
b) Denote by g the isomorphism Xg ~ Yg induced by wg. For f € C°(Y), we have
o(ws)f:y— ¥({a, ) f((—ysa,0))dpws(a).
ws XNX\X

Set ps : x € Xg + (ysz,—) € X which is symmetric. We define
My f € C2(Ys) = Fpu, (f o (=7s)) 0 (—7s) 7 € C(Ys)
where F,, . is the Fourier transform in Proposition 4.5 i.e. for f’ € C2°(Xs) and x € Xs

Fups 8@ = [ (5w, ) (@)dpas (@)

S
Through the decomposition C°(Y) = C°(Ys) ® CX(Yegs), we get o(wg) = M,g ® Id.
The same holds for wg and o(wg/) of course.
Now, via the decomposition C°(Y) = C°(Ysns') ® C°(Ysasr) @ C°(Ye(susry), the
operator o(wg) o o(wss) can be written as (M,g o M, ,) ® M, ., ® Id where ygas is
associated to wgag. However, the restriction of M., and M, , to C°(Ysnss) are both

Vs’
equal to M, .. Furthemore

MWQSnsff = 7 (Myg o f o (—78n87)) © (—y8ns)

Hpgngr

Frtng o0 Fipg o (f 0 (=78087))) © (—vsnsr)
= F. _ (fo(=vsns')) e (—ysns)

Hpgngt

We finally obtain thanks to Proposition 4.5 that for all f € C°(Ysns/) and all y € Ygngr
M2 f(y) = (—1,det(Qr, )r(Q-11)' x f(-y).

Ysns! 2Psns’
Since wsws: = wsasasns: where asng = (—Idw, ) @ IdWc<Sms/> is in P(X), the
measure fygwy — 917(_1)1 X flwg - 1N the previous decomposition, o(wswgr) can be
written as Agng @ M, , ®1d where Agng f(y) = Qy gy X f(=y). Therefore, because

(_Ldet(Q%psms,))F = (_1’27I)F = (_1721)F = (_1’2)1}7 =1,
we obtain
é(ws, wsl) = Ql—l,l X Q(_1)171.
By applying Proposition 4.3 g) repeatedly, we get

1(1—1)

Qayg = (Q—l,l)l x(=1,-1)p?
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1(141)
Finally, because (Q_11)% = (=1, —1)p, we conclude that &(wg, wg/) = (—1,—-1)p2 .
¢) On the one hand, for all f € Sx, an explicit computation of o(g) oo (¢’) f((0,0)) gives

Lo fon o FU& T 0)() g™ .0y (g ).
gXNX\X Jg XnX\X

On the other hand, the morphism
z € X — (pg(x),py () € (X NX\X) X (9X N X\X)
has kernel g¢’X N X. However, g and ¢’ commute and each one of them induces the
identity map by passing to the respective quotients ¢’ X N X\ X and gX N X\ X. We use
Proposition 4.3 g) again to obtain
fg @ pig = (2(9),2(9')) Frigy -
By a change of variables, we get
a(g) 2 a(g")f((0,0)) = (z(g),2(9")r x a(gg")f((0,0))

for all f € Sx. Therefore o(g) oo (g’) = (z(g9),x(9'))r x o(g99). O

Definition 5.4. We let Sp(W) xs R* be the set Sp(W) x R* with group law
(9,2) - (¢, N) = (99, é(g, ") AN).
Theorem 5.5. We follow the same case distinctions as Theorem 3.1.

a) If F is finite, or if the characteristic £ of R is 2, then ¢ is the trivial 2-cocyle.
In particular o is a section of ps, that is a group morphism. Furthermore,
such a group morphism is unique, except in the exceptional case F = F3 and
dimpW = 2. The group morphism o always defines an isomorphism of central
extensions

(9:)) € Sp(W) x B* 1= (g, Ao(g)) € Spy s, (W).

b) If F is local non-archimedean and € # 2, then ¢ takes value in {£1}. In particular
o 1s the unique section of ps realising an isomorphism of central extensions

—~R
(9,2) € Sp(W) x& R = (g, A0(9)) € Spy, 5 (W).
Its restriction to Sp(W) xs {£1} induces an isomorphism with él\)ﬁsx(W).

Proof. We treat both points at the same time. Let p1,p2,p € P(X) and g1, g2 € Sp(W).
By decomposing o(g1p~!) o o(pgz), we deduce from Lemma 5.3 that

A

&(g1p™ ", pg2) = &(g1,p)e(p, 92)e(p, p)e(g1, g2),
and by decomposing o(p1g1) o o(gap2) as well, we obtain
&(p1g1, g2p2) = €(p1, 91)é(92, p2)¢(91, 92)¢(p1, 9192)E(P19192, P2)-
Therefore by Lemma 5.3 a), we get

. _ . _ 1 in case a);
¢(prgrp 1,1092]92)0(91,92) P = { 41  in case b)).

There remains to prove that, for g; and g well-chosen, the 2-cocycle é(g1, g2) is either
trivial or has values in {£1}. To do so, we use a decomposition associated to the
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Leray invariant [RR93, Th 2.16]. For all ¢g; and gy in Sp(W), there exist Si, Se and
S in {1,...,m}, and an antisymmetric isomorphism p : Yg¢ — Xg, i.e. p* = —p, such
that (S1US2) NS =0 and g1 = prwsus,up~t and ga = pwsus,p2. We simply need
to compute é(wsus, up, wsus,) for the previous morphism p. However, by computing
o(wsus, up) o o(wsus,) in different ways, we obtain by Lemma 5.3 that

(wsus, Up, Wsus,) = E(wsu,, ws)é(ws, ws,, wsu,ws)E(ws, , ws,)
W(+1)
= ‘(wsup, wg) ((—1)l,m(w5upw5))p (—1,-1)p?2

where [ = |S1 N Ss|.
There only remains to study é(wsu,,ws) to finish the proof:

Lemma 5.6. We have
t(wsup, wg) = (=2, det(Qyspys)) P X hr(Qysprs)
where Qgpys () = (x,75pY5%) is a non-degenerate quadratic form over Xg.

Proof. For all S C {1,...,m} and all p : Y5 — Xg such that u, € Sp(W), we want
to compute the composition o(wsu,) o o(wg) in terms of o(wgu,wg). Let f € Sx. As
o(wsu,) = o(wg) o o(u,) thanks to Lemma 5.3, we have

o(wsup) o o(ws) f((0,0)) = / (o(up) 0 0(ws) f) (w5 a,0))dpws (a).

Xs

However (0(u,) o o(ws) )((ws'a,0)) = $(k(ws'a, (=p)wg'a)) x (o(ws)f)((ws'a,0))
by the formulas of the Schrédinger model. Moreover

o(ws) f(w5'a,0) = [ f(0u5'd,0)(w5 0, 0)duus (o)
= [t w5 ) F((ws" ' 0) s ()

= 1onsl™ [ w5 e pusa ) F(—wg pws d 0)djuus (a”)

by the change of variables a’ = ¢, 5(a") = —pwg'a” for the automorphism ¢, s of Xg
induced by —pwgl over Xg.
Since u/jl =u_,, we get
—wg'pwgla’ = wgluglwgla" —wg?a”.
Therefore
f(~wg'pwgtad”,0)) = w(§<w§1a”, (—p)wg'a")) f(wg'u, 'wgta”,0)).

This leads to o(wsu,) o o(ws) f((0,0)) up to a factor |¢, s| ™! i.e.

/XS /X . ¢<;<ws Ya—a"), (—p)wg'(a - a”))) (Loguyws £)((@”,0))dptang (a”)dpg ().

Thanks to the non-normalised Weil factor, we can simplify the latter as

Qg (160 Q5) % [ Uiguyue S (", 0))dpsg (@)

S
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where Qs(z) = —1(z, wspwz'z).
Furthermore wsu,ws € Geg can be decomposed in Wg = Xg + Yg as

* *

where wg = * | and V5 = —7s.
Vspys  * * s

WU WS = {

Since ygpys has rank |S|, there exist p; and ps in P(Xg) such that wsu,ws = p1wsps.
In addition, there exists a decomposition of the form

Idx * a *
WstpWs =1 0" Idy, | [0 (a9)* |

In particular, such a decomposition imposes ysa = vspys i.e. a = pys € GLp(Xg).
With these notations, we have ¢, ¢ = pys and Qgs(x) = %(w, YSPYST).
The expression of the measure fi,qy ,wg then becomes

Hwsupws = Ql,det(ms) X Hws -

This leads to the formula

(wstp, ws) = |¢p,s] 7" X Qg (¥ 0 Q) X Qaet(pys) 1

We are going to simplify it in what follows.
On the one hand, in the standard basis B of Xg, Corollary 4.4 gives

%vsms)’l % hF(Q%VSPVS) x Q"“”S (%0 Qy)-

But Q,,,, (¢ 0 Q) = (QL%)|5| X Qu, (Vo Q) = (QL%)W', where the last equality
can be deduced form the definition of 4. Furthermore

hF(Q%'ysms) = (2’det(Q’YSP’Ys)|S|71)F X hp(Qyspys)-

Q,Ufws (@Z} © Q%'}/SP“{S) = QdetB(Q

and

QdetB(Ql ),1 — (2_‘5‘7det(Q’YSP’YS))F X 9245‘,1 X QdetB(stms),l

37SPYS

By noticing that Q,- s/ ; = (21 1)|S|, we get
b 27

Qﬂws (¢ o Q%'YSP'YS) = (27det(Q’YSP'YS))F X QdetB(erspys),th(Q'}/Sp’YS)'

On the other hand, the matrix representation of the quadratic form 4, in the basis
B is Qygpys(r) = X MX where M = Matg(pys) and X € FI¥l is the coordinate vector
associated to # € X in the basis B. This means detg(Q~gpys) = det(pys). Because for
all @ € F*, we have (Q,1)? = |a| x (a,a)r = |a| x (—1,a)F, we obtain

e(wsup, ws) = (=2, det(Qqgpys)) P X hr(Qyspys)-
O
To finish the proof of a), the uniqueness outside the exceptional case is a consequence
of Theorem 3.1, whereas the uniqueness in b) is a classical fact about isomorphisms

of central extensions, which are parametrised by characters of Sp(W) in our situation.
Since the symplectic group is perfect, there is only one such isomorphism. O
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Remark 5.7. The formula we obtained in the proof for é(wgu,, wg) is slightly different
from [RR93], but the two 2-cocyles are cohomologous. Indeed, these cocycles correspond
to different choices of Haar measures, namely

HgRao = Q%,%detx(mpz) X <Z>1 “Hw; = (2,.%’(9))}7‘ X fbg

i.e. URao(g) = (23$(g))F X o'(g). More generally, if Kg,o0 = Qa,adetx(plpg) X @1 - Huw; for
a € F*, this gives a 2-cocycle &, in the same cohomology class as ¢é.

5.5. By writing o(p1g1)o(g2p2) in different ways, we obtain

¢(p191, g2p2) = E(p1, 91)¢(g2, p2)E(g192, P2)E(P1, 9192p2)E(91, g2)
and likewise for o(g1p)o(p~'g2) to obtain

e(gip~ ", pg2) = é(g1,p)é(p, 92)¢(p, pg2)é(gr, g2).

Combining these facts with Lemma 5.3 and Lemma 5.6, we deduce the general formula:

Corollary 5.8. Let g1 and go be in Sp(W). By definition of the Leray invariant, there
exist p1,p2,p € P(X), S C{1,...,m}, an antisymmetric isomorphism p : Yg — Xg and
51,50 C €S such that g1 = plwsuslupp_l and g2 = pwsys,p2. With these notations,
and by setting | = |S1 N Sa|, we have

1(1+1)

&(g1,92) = (2(91), 2(92)) F % (2(91)2(92), —2(9192))F X (=1,-1)p*

X ((—1)l,x(w5upw5))p X E(wsup, ws).

6. AROUND A MODULAR THETA CORRESPONDENCE

6.1. Let (Hy, H2) be a reductive dual pair in Sp(W). Recall that H; and Hy are two
reductive subgroups of Sp(W) that are mutual centralisers. See [MVW87, Chap I, 1.17]
for more details about dual pairs and their classification.

—~R
Let ps : Spy s(W) — Sp(W) be the projection associated to a model S of the Weil
representation. We set

Hy s =pg'(Hy) and Hys = pg' (Hz).
~ ~ —~R
Proposition 6.1. The groups Hi s and Ha s are mutual centralisers in Spy, s(W).

Proof. First of all, Lemma 2.7 ensures the centraliser of ITILS contains ﬁgvs. If g is in
the centraliser of H; g, then pg(g) is in the centraliser of Hy i.e. ps(g) € Ha. Hence the
centraliser of H; g is Hy g. Similarly H; g is the centraliser of Hy g. [l

~ ~R
We then say (Hy s, Ha s) forms a reductive dual pair in Sp,, ¢(W). We still denote by
wy, s the pullback of the Weil representation via the morphism given by multiplication

~ ~ R
Hl,S X H27S — Spr(W).
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6.2. We want to consider only a certain kind of smooth representations of these central
extensions of H; and Hj, namely the genuine representations, as w,y g itself is genuine.
Let H be a closed subgroup H of Sp(W). The category of genuine representations is

Rep%™(Hgs) = {(m,V) € Repg(Hs) | VA € R, 7((Idw, Ndg)) = Ady }.

Let Irr%; n(ﬁl,g) be the isomorphism classes of irreducible genuine representations. Note
that the contragredient of a genuine representation is not genuine. However, there are
two ways to solve this issue, as Proposition 3.12 illustrates. We can twist by a character
to make the naive contragredient genuine, which requires carrying cumbersome notations
due to this twist. As an alternative, we can work in the category Repf; "(Hyg) for the two-
fold cover of H as the contragredient now remains genuine. In addition, the categories
Repfy "(Hg) and Rep% "(Hyg) are equivalent. We prefer this second more elegant solution.

6.3. Let m € Replg.fn(f]l) be irreducible. For V € Repiﬁen(fh x Hy), the largest -
isotypic quotient Vi, of m is the largest quotient on V on which the action of Hy is
m1-isotypic. An alternative definition is that it is the unique quotient of V' which factors
all maps V' — m1. Moreover, it is endowed with an action of H,.

We now assume R is an algebraically closed field. From [Tri26], we obtain:

gen gen

Theorem 6.2. Let m; € Irr, (ﬁLS). There exists O(m) € Repp, (ITI275), unique up to
isomorphism, such that (wy g)x ~ T Qg O(m1).

6.4. We discuss some statements on ©(7;) at the heart of the local theta correspondence.
We now suppose F' is local non-archimedean. Let m € II‘I“%GH(}AILS). We consider the
following first statement:

(Fin) ©(m) has finite length.
If (Fin) holds, the maximal semisimple quotient () of ©(m), also called the cosocle,
is well-defined. We add the second statement

(Irr) 6(my) is irreducible or zero.
We also add when (Fin) and (Irr) hold for all 71, the third statement

(Uni) 0 # 6(m) ~ 0(x}) if and only if m ~ 7}

6.5. When (Fin)-(Irr)-(Uni) hold, together with the three reverse statements obtained
by exchanging the roles of Hy and Hs, we say that the R-modular local theta corres-
pondence holds or is valid. In this case, the symbol 6 is used in both ways and defines
a bijection between subsets of representations that are contributing i.e.

en /17 0 en /1y
{m e Iy (Hi,g) | ©(m1) # 0} =~ {my € Iy (Ha,g) | O(m2) # 0}
where 0(m1) = 7 if and only if wy 5§ - T @R 2.

6.6. If (Hi, Hy) is a dual pair of type II, i.e. if H; and Hy are general linear groups
over a division algebra, then the R-modular theta correspondence holds as long as the
characteristic £ of R does not divide the pro-orders of H; and Ho, thanks to the thesis
work [Min06]. When ¢ divides the pro-order of H; or Hj, the statement (Irr) does not
hold as one can exhibit some 7; by [Min06, Sec. 4.5.2] such that O(m) is semisimple of
length 2. If (Hy, Hs) is a dual pair of type I, i.e. if H; and Hs are isometry groups, we
refer to [Tri25, Th A] for the R-modular theta correspondence for non-quaternionic dual
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pairs if £ is large enough compared to H; and Hs, but the bound on /¢ is not explicit,
and to [Tri25, Th B] for a counter-example to (Irr) when ¢ is not large.

7. SUPERCUSPIDAL BLOCKS IN BANAL CHARACTERISTIC

7.1. Let G be a reductive group over F' with compact centre. Let £ be a prime number
which does not divide the pro-order of G. We write £t |G|. Let v, : Zy — Fy.

Let u be a Haar measure of G with values in Q,. We assume p is normalised on
some open pro-p-subgroup, so that the volume of any open pro-p-subgroups subgroup
belongs to p”. In particular 4 is also a measure with values in Zy. Let t;(1) be the Haar
measure with values in F, obtained from p. The Hecke algebras Hg,(G) and Hz(G)
are associated to the measure p, whereas Hg (G) is associated to ty(u). This choice of
measures makes the convolution products compatible i.e. we have morphisms of algebras

’HE(G) — H@(G) and Hz(G) —» HE(G)

We use the generic notation Hg (G) for these algebras where R is one of Qy, Z; or Fy.

7.2. The centre 3z(G) of the category Repr(G), called the Bernstein centre, is by
definition the ring of endomorphisms of the identity functor. This ring is commutative
and we can see z € 3i(() as a collection (2v)yerep, (G) of G-equivariant endomorphisms
such that for all f € Hompg)(V, W), we have zy o f = f o 2y. The natural action of 3z
on the regular representation C2°(G) is faithful i.e. z = (2v)v = 20 (qr) I8 injective.
We can even upgrade the latter into a bijection 3z (G) ~ Endg(gxq(Ce°(G,R)).

We define the functor of scalar extension to Q; as
— ®Z7@ :V € Repz(G) = V ®Z7@ € Repz(G)

We also define the reduction modulo £ functor for representations with coefficients in Zy
thanks to vy : Zy — F, and we still denote it by

vy : V € Repz(G) = V/IV =V @5 F; € Repg;(G).

Remark 7.1. This functor is not to be confused with the usual reduction modulo ¢
map, commonly denoted by 7, in the literature [Vig96, I11.5.11.b], [DHKM24, Sec 4.2].

Note that we have natural morphisms between centres
37,(G) = 3g,(G) and 57(G) — 57,(G),

induced by the previous two functors. These morphisms can be easily understood via
the regular representation. Indeed, let ¢ be a (E X G)—equi@iant endomorphism of
O (G, Zy). Because C2°(G, Qo) @7,Qr = C(G, Q) and p©7,Qy is (Gx G)-equivariant,
this gives the first ring morphism. It is injective because ¢ — ¢ ®7; Qy is injective.
Similarly C2°(G,Qy) ®Z7F7 >~ C°(G,Fy) induces the second ring morphism. However,
there is a priori no formal reason that would guarantee it is surjective.
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7.3. Let S be a subset of Irrg (G) and ¢S be its complement. Denote by Rep% (G) the
full subcategory of Repg (G) whose objects have all their irreducible subquotients in S.
We say a subset S of Irrg (G) decomposes Repg (G) if there is a product of categories

Repp(G) = Rep}t (@) x Repid (G).

In this situation, there exists a (unique) central idempotent eg € 3z (G) which gives the
previous decomposition i.e. such that

esRepp (G) = Rep%(G) and (1 —es)Repr(G) = Rep;ég(G).

Conversely, any central idempotent e of the Bernstein centre induces a decomposition of
the category Repg(G). By definition, such a decomposition induces a partition in two
sets of Irrg (G). We say a central idempotent e is primitive if the category eRepgp(G)
is indecomposable. This is equivalent to saying that e can’t be written as a sum of two
non-zero central idempotents. We say a non-empty subset S of Irrg (G) defines a block
in Repg (G) if S decomposes Repy (G) and there is no non-empty proper subsets of S
decomposing Repg (G). Finally, the associated central idempotent eg is primitive if and
only if S defines a block.

7.4. Let I € Repg,(G) be an irreducible cuspidal representation. Since the centre of ¢
is compact and £ 1 |G|, it is a projective and injective object in the category Rep@(G).
This implies that {IT} decomposes Rep@(G). By Schur’s lemma and Morita equivalence

Rep(%}(G) ~ Q; — mod

i.e. all representations are Il-isotypic and only the multiplicity of IT matters. We denote
by er the associated primitive central idempotent.

7.5. The representation II is integral [DHKM24, 11.4.12] d.e. II contains a free Zj-
lattice L which is stable under the action of G. According to [DHKM?24, Prop 4.15], for
any stable Z-lattice L in II, the representation m = ty(L) is irreducible and cuspidal.
The isomorphism class of m does not depend on the choice of L as a consequence of
the Brauer-Nesbitt principle. In particular, if we consider II as a representation with
coefficients in Zg, this means all its irreducible subquotients are isomorphic to 7. Once
again, as the centre of G is compact and £ 1 |G|, the representation 7 is a projective and
injective object in Repg,(G) and the singleton {7} decomposes Repg (G). We let er be
the associated primitive central idempotent.

7.6. We want to show L defines a block in RepE(G). We will use a compatibility for
the formal degrees of II and 7 to show it is projective, which gives an alternative proof
of [DHKM?24, Prop 4.17].
Let R be Qq or Fy. Let V € Repp(G) be an irreducible compact representation i.e.
VerVV — CX(G,R)
vRrvY = gevY(gov)
In particular IT and 7w are compact representations. Let p be a Haar measure with
values in R. This endows CZ°(G, R) with a structure of algebra via convolution and
we have a natural map C2°(G,R) — Endgr(V) given by the action on V. The latter
map depends on . We say V has a formal degree if there exists a Haar measure ;"



32 JUSTIN TRIAS

such that the composition V @ V¥V — C®(G,R) — Endg(V) is the canonical map
v g vY = (s vY(s) v). If the formal degree exists, it is of course unique.

All projective representations have a formal degree. We now show a compatibility
between the formal degrees p!! and ™.

Lemma 7.2. The formal degree of I comes from a Haar measure with values in Zy and
reduces modulo £ to the formal degree of w. In particular L € RepZ(G) s projective.

Proof. Let B = (v;);er be a basis of L over Zy. We denote by (v,’);cr the dual basis of B
in ITV. Then the Z-lattice LY generated by this dual basis is a stable Zg-lattice in II".
By choosing a Haar measure p with values in Zy, the coefficients of L acts via

L&z LY — C2(G,Z¢) — Endg(L)
where only the last morphism depends on p. o
Moreover the functors —®z-Q; and r, induce W@ET(V — C°(G,F¢) = Endg(7) and

II ®g; v — CX(G,Qp) — Endg,(II). By existence of the formal degree, these maps

are scalar multiples of the canonical map. Let aif € Q; and a, € F; be those scalars.
We easily see that ap # 0, otherwise u must be zero. Moreover, if we assume that

to(p) # 0, then we see that a, # 0 and ay; € Zy and ty(ay) = a,. As a result ay € Ze".
Therefore the measure ap;' i can be identified with p™ and v, (u?) = p™.

As L is admissible, the image of C°(G,Z;) — Endz_(L) lies in End%(L) where
[ € Endei—I;(L) if there exists L' C L of finite rank such that L = L' & L” and f
factors through an endomorphism in EndE(L/ ). Furthermore End%l(L) ~ L @ LY in

Repz-(G x G). Therefore L @7~ LY — CX(G,Zy) admits a retract i.e.

C(GZe) = (Leg L) o V'
But C°(G,Zy) is projective by [Tri25, Lem 1.4], so L is projective as well. O
Proposition 7.3. The idempotent ey belongs to 37.(G) and t(en) = ex.

Proof. From the previous decomposition

C¥(GZp) ~ (Log L) & V',

gives by scalar extension to Qy the decomposition

Ccoo(Ga@) = GHC((:)O(Gv@) D (1 - GH)CSO(G,@)
because efC° (G, Qy) ~ H®@HV. In particular Homgz ., (L, V') = 0, so no subquotient
of V' can be isomorphic to 7, otherwise HomZ[G} (L,V') # 0 as L is projective. Therefore

there exists e € 37-(G) such that eC®(G,Zy) ~ L ®7, LY and e = egy in 3g,(G). We
have ty(err) = er because 7 is the only irreducible subqutotient of L. [l

Then enRepz(G) = Rep%}(G) is clearly a block and we also have t/(efV) = erty(V)
for all V' € Repz(G).
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8. CONGRUENCES OF SUPERCUSPIDAL THETA LIFTS IN BANAL CHARACTERISTIC

Let (Hy, H2) be a dual pair of type I in Sp(W) over a non-archimedean local field F'.
Let 1 be a non-trivial character of F with values in Z,. In particular we can consider
1 as being valued in Qy, and its reduction modulo ¢ defines a non-trivial character with
values in Fy, still denoted ). We allow this abuse of notations as the context should be
clear. Let R be any of Qy, Z; or Fy.

8.1. Let X be a Lagrangian in W. Let V¥ be the Schrodinger model of the Heisenberg
representation with coefficients in R associated to 1 and X. When R = Z,, we simply
recall from [Tri23] that is the subspace of functions valued in Z;. We have equivariant
morphisms for the action of the Heisenberg group

VEZ s V2 and VE - VE.
The model of the Weil representation over R associated to ¢ and X is

(Ww,vjfa VE) € Repp(Sp(W)),

where Sp(W) is the metaplectic group. The previous morphisms are equivariant i.e.
w ow s andw —ow .
AT w Vi ViV

We denote by H; and Hj the inverse images of H; and Hy in §f)(W) Therefore
Wy VR € Repg (Hy x Hy).

8.2. We now suppose that ¢ does not divide the pro-order of Hi. We also assume that
Hy is split over H;p i.e. Hy ~ Hy x {£1}. Then we have the following equivalence
of categories Rep%en(fll) ~ Repg(H1). These categories share the same properties in
the sense that a representation in RepR(ﬁ 1) is projective, resp. injective or cuspidal or
integral, if and only its image in Repg (H1) is. We suppose H, is split as well.

Let I, € Repg;(#H1) be irreducible and cuspidal. Let m € Repg;(H1) be the irredu-
cible cuspidal representation appearing in Section 7.5. A famous result in the complex
setting [MVW87, Chap. 3, IV.4 Th. 1) a)] ensures that ©(II;) is irreducible when it is
non-zero. This result is also valid over Q; as Q, ~ C. If O(II;) is integral, it admits a
stable Fy-lattice L and the Brauer-Nesbitt principle then guarantees the semisimplifica-
tion 7¢(I1;) of ty(L) has finite length and is independent of the choice of L.

Proposition 8.1. We recall that £ does not divide the pro-order ofI:I1 and we assume Hy

and Hy are split. Then the representation O(I1y) is integral and the semisimplification
of O(my) is re(O(I1y)). In particular ©(mwy) has finite length.

Proof. Because the category Rep{—nl}(H 1) is semisimple

4
We consider enlwqp,vfff - enlwzp,vgi’ in Repz (Hy x Hz). In addition

) =~ o ~ II; ®5 O(I11) in Reps-(H; x Ha).
“fly, = My = T Og O i Repgy(fh x 1)

W(enlww,vfjf) = emtg(ww,vg—é) = emwwyf? ~ m O, O(m1).
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To finish the proof, we need to show that enlww Vi € Repz (H1 x H,) is a stable
—_ ) X
Zy-lattice in the irreducible representation

enlww 0% ~ T 5, o(II,) Rep@(Hl X Ha).
WVx

However, we have to replace Z; by a finite extension of Z, in our argument. First of
all, by a forthcoming work [Tri26], there exists a finite extension E of Q; and w €
Repp,, (H1 x Hz) such that w ®p, R =~ Wy VR Moreover, up to enlarging F again, we
can assume Iy and 7; are realised over £ and kg. By abuse of notations, we still denote
these representations by IT; and 7. We also write err, € 30,(G) and er, € 35, (G).

The representation w does not contain any E-lines. As w = er,w & (1 — eqq, )w, then
err,w does not contain an E-line. Furthermore er,w C ey, (w ®p, F) ~ II; @ O(11;)
where the latter is an irreducible admissible representation (assuming ©(II;) # 0). Since
Op is local principal complete and dimg(Il; ® p ©(I1;)) is countable, we deduce that
er, w is a stable Opg-lattice by [Vig96, 1.9.2]. Therefore er, w®0,, Z¢ is a stable Z,-lattice.
In particular ©(II;) is integral.

By [Vig96, I11.5.11] t‘g(enlww VE) = 71 ®F, O(m1) has finite length, so does O(m). U

"X

We can improve the previous result in the so-called banal case i.e. when ¢ does not
divide any of the pro-orders of H; and Hy. The condition ©(II;) is irreducible cuspidal
recovers the famous case of the first occurrence index.

Theorem 8.2. Assume £ does not divide the pro-orders of Hy and Hs, and assume 1:1'1
and Hy are split. Suppose O(I11) is an irreducible cuspidal representation. Then O (1)
is an trreducible cuspidal representation.

Proof. By [DHKM24, Prop 4.15], the representation r¢(©(Il;)) is irreducible and cuspidal.
It is also the semisimplified of ©(7y), so O(m) is irreducible and cuspidal. O

Remark 8.3. Though it is probably a hard question, it would be nice to have a more
precise description of the stable Z,-lattice
— C 7 ~ I ®= (11
eme, 7 S eme, g = h g, Oh)

to describe ©(m;) since

V[j‘(/?,<k)) =T ®E @(7‘(1).

At the moment, the only information we have control on is about 7,(©(Il;)), which is the
semisimplification of ©(71). So it does not tell us much about 6(m;), except if r,(©O(I1;))
has length at most 1. Also, even when £ is banal with respect to H; and Hs, it is not true
any irreducible integral representation has irreducible reduction modulo ¢. Therefore it

is not possible to generalise our arguments beyond the cuspidal case.

ty(emr w
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