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Abstract. Let F be a non-archimedean local field of characteristic different from 2
and of residual characteristic p. We generalise the theory of the Weil representation
over F with complex coefficients to ℓ-modular representations i.e. when the complex
coefficients are replaced by a coefficient field R of characteristic ℓ ̸= p. We obtain along
the way a generalisation of the Stone-von Neumann theorem to the ℓ-modular setting,
together with the Weil representation with coefficients in R on the R-metaplectic group.
Surprisingly enough, the latter R-metaplectic group happens to be split over the sym-
plectic group if ℓ = 2. The theory also makes sense when F is a finite field of odd
characteristic. We also establish the irreducibility of the theta lift in the cuspidal case
as long as ℓ does not divide the pro-orders of the groups at stake and we provide a
compatibility to congruences in this setting via an integral version of the theta lift.
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Introduction

The theta correspondence plays a key role in the theory of automorphic forms as one
of a few explicit methods to deal with representations of two groups forming a dual pair
in a symplectic group. It allowed to establish the local Langlands correspondence [GT11]
for GSp4, provided relations between Fourier coefficients of modular forms and special
values of L-functions via the Shimura–Waldspurger correspondence [Wal80, Wal91] as
well as deep relations with the formal degree [GI14]. This correspondence has a local
and global version, which are both built via the local and global Weil representation.
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2 JUSTIN TRIAS

On the other hand, there is an interest in considering representations with more
general coefficient fields than the complex numbers, as the classical Weil representation
is. The study of ℓ-modular representation of p-adic groups – here ℓ-modular means over
a field of positive characteristic different from p – was initiated by Vignéras [Vig89] and
was motivated by conjectures of Serre about congruences between modular forms. It has
been an active research topic ever since, expanding towards families of representations
as well i.e. over coefficient rings putting together characteristic zero fields and positive
characteristic fields.

In this perspective, we propose to generalise the construction of the local Weil repres-
entation to the ℓ-modular setting, where local means for us over a non-archimedean local
field, so we exclude the archimedean case. We also study some properties of congruences
for cuspidal representations and provide an integral version of the theta lift in this case.
The paper is divided into three parts, and so is the rest of the introduction when we
explore our results in more detail. The first part (Sections 1-3) deals with the ℓ-modular
generalisation of the Stone-von Neumann theorem, the Heisenberg representation and its
models, the metaplectic group, the Weil representation and its models, and some other
classical properties. The second part (Sections 4-5) establishes a formula for the meta-
plectic cocycle similiar to [RR93] via an explicit section into the metaplectic group. The
third part (Sections 6-8) states what an ℓ-modular local theta correspondence should
look like and studies in more detail the cuspidal case, generalising a result of Kudla as
long as ℓ is large enough. This paper replaces [Tri20] and partially improves it thanks
to the recent results of [DHKM24].

0.1. Let F be a field of characteristic different from 2, that is either local non-archimedean
of residual characteristic p or finite of characteristic p. Let R be a field of characteristic ℓ
and assume there exists a non-trivial smooth character ψ : F → R×. In particular, this
condition forces ℓ ̸= p. All our characters and representations are assumed to be smooth.
Let W be a symplectic space of finite dimension over F and let H be the Heisenberg
group. We generalise the theorem of Stone-von Neumann:

Theorem A. Let ψ : F → R× be a non-trivial character. Up to isomorphism, there
exists a unique irreducible representation (ρψ, S) ∈ RepR(H) with central character ψ.

We call the unique isomorphism class of the theorem the Heisenberg representation
associated to ψ. The Heisenberg representation has explicit models afforded by self-dual
subgroups in W such as Lagrangians (the Schrödinger model) and self-dual lattices when
F is local non-archimedean (the lattice model). Let (ρψ, S) be any model of the Heisen-
berg representation. The natural action of Sp(W ) on H preserves the isomorphism class
of (ρψ, S), so Schur’s lemma gives a projective representation σS : Sp(W ) → PGLR(S).
By taking the fibre product σS lifts to an actual representation ωψ,S i.e.

S̃p
R

ψ,S(W )

pS

��

ωψ,S // GLR(S)

red
��

Sp(W ) σS // PGLR(S)
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where S̃p
R

ψ,S(W ) = Sp(W ) ×PGLR(S) GLR(S) is a central extension of Sp(W ) by R×

called the R-metaplectic group and ωψ,S is called the Weil representation.
The R-metaplectic group fits into an exact sequence

1 −→ R× iS−→ S̃pψ,S(W ) pS−→ Sp(W ) −→ 1.

We prove that the derived subgroup Ŝpψ,S(W ) of the R-metaplectic group is
• the usual metaplectic group Mp(W ) if F is local non-archimedean and ℓ ̸= 2;
• the derived subgroup [Sp(W ), Sp(W )] of Sp(W ) if F is finite or ℓ = 2.

Note that [Sp(W ), Sp(W )] = Sp(W ), except in the exceptional case Sp(W ) ≃ SL2(F3).
When F is local non-archimedean and ℓ = 2, the R-metaplectic group is actually split
since it contains Sp(W ). In this case, the Weil representation becomes a representation
of Sp(W ) rather than the two-fold cover Mp(W ). Intuitively, when ℓ = 2, a genuine
representation of Mp(W ) actually factors through Sp(W ) since 1 = −1 in R.

We then study classical properties of the R-metaplectic group and prove it is a locally
profinite group. We also prove other classical facts about the Weil representation, namely
it is smooth and admissible. We also give some formulas for the Weil representation in
different famous models, such as the Shcrödinger and the lattice models.

0.2. We then build a section Sp(W ) → S̃pψ,S(W ) of pS which is equivalent to giving a
map g ∈ Sp(W ) 7→ Mg ∈ GLR(S) such that σS(g) = RED(Mg) for all g ∈ Sp(W ). We
do not follow the classical construction of such a section, and propose a new approach,
for two reasons.

First of all, the classical constructions, such as the Shale–Segal–Weil representation
[RR93] or even all usual formulas on the Schrödinger model, require to introduce quant-
ities which may not be already in R in the following sense. Let F be p-adic and let
R = Q[ζp∞ ]. Then the theorem of Stone-von Neumann is valid over Q[ζp∞ ], however,
the classical sections of pS are not necessarily defined over Q[ζp∞ ] because they require√
q to be in Q[ζp∞ ] where q is the residue cardinality of F i.e. we do not necessarily have√
q ∈ Q[ζp∞ ]. As a result, in order to define the classical section, one needs to adjoin √

q
to Q[ζp∞ ], but it seems wrong to do so if we were able to define a section directly valued
in Q[ζp∞ ]. Note that either √

p or i√p belongs to Q[ζp∞ ] when p ̸= 2, but i /∈ Q[ζp∞ ],
so only one of them belongs to Q[ζp∞ ].

Secondly, the classical sections make a key use of unitarity in order to normalise some
operators and a uniqueness statement such as [RR93, Th 3.5] is impossible to achieve
when R has positive characteristic since unitarity does not make sense. These consider-
ations become extremely important if one wants to descend the Weil representation over
a number field, as we will do in [Tri26].

For these reasons, we adopt a new strategy which is based on a quantity called the
non-normalised Weil factor. As opposed to the classical Weil factor, its non-normalised
version is guaranteed to remain within the realm of the values of the character ψ and does
not require to make any choice in R, while the Weil factor requires one to fix √

q ∈ R.
We also interpret this quantity as a natural way to normalise Fourier transforms, by
staying in the range of the values of ψ. This allows us to directly define a section

σ : Sp(W ) → S̃pψ,SX (W )
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in the Schrödinger model SX , which is valued in Ŝpψ,SX (W ) if F is local non-archimedean
and ℓ ̸= 2 and is a group morphism when F is finite or ℓ = 2. Similarly to [RR93],
this section allows us to make explicit the associated 2-cocyle ĉ, called the metaplectic
cocycle, which is respectively {±1}-valued or trivial. Again, the fact that this cocycle is
{±1}-valued or trivial will be central in the Galois descent arguments of [Tri26].

0.3. We now suppose that R is an algebraically closed field. Let (H1, H2) be a dual pair
of type I in Sp(W ). We assume that the inverse images of H1 and H2 in Mp(W ) are split.
In particular, the Weil representation ωRψ can be pulled back along H1 ×H2 → Mp(W ).
If Π1 ∈ RepR(H1) is irreducible and cuspidal, the largest Π1-isotypic quotient of the
Weil representation satisfies (ωRψ )Π1 ≃ Π1 ⊗R Θ(Π1) where Θ(Π1) ∈ RepR(H2).

In the classical theta correspondence, i.e. when R = C, a famous result [Kud86] of
Kudla states that, if Θ(Π1) ̸= 0 is cuspidal, then it is irreducible. This situation happens
for the so-called first occurrence in Witt towers. There is an even stronger version of
this result, which says that Θ(Π1) is either zero or irreducible [MVW87]. As C and Qℓ

are isomorphic, these results are also valid replacing C by Qℓ.
We assume ℓ does not divide the pro-order of H1. Then Π1 is an integral representation

and for all stable Zℓ-lattices L in Π1, we have L⊗Zℓ Fℓ ≃ π1 where π1 is irreducible and
cuspidal. By the Brauer-Nesbitt principle, the representation π1 does not depend on the
choice of L. We write π1 = rℓ(Π1). Therefore

(ωQℓ
ψ )Π1 ≃ Π1 ⊗Qℓ Θ(Π1) and (ωFℓ

ψ )Π1 ≃ π1 ⊗Fℓ Θ(π1)

and since π1 = rℓ(Π1), we want to relate Θ(Π1) ∈ RepQℓ(H2) and Θ(π1) ∈ RepFℓ(H2).
Recall that Θ(Π1) is either zero or irreducible.

We are able to do so, i.e. we are able to produce congruences, using an integral model
of the Weil representation ωZℓ

ψ [Tri23]. We show that there exists a decomposition

ωZℓ
ψ = eΠ1ω

Zℓ
ψ ⊕ (1 − eΠ1)ωZℓ

ψ

where eΠ1ω
Zℓ
ψ ∈ RepZℓ(H1 ×H2) is a Zℓ-lattice which controls these congruences i.e.

eΠ1ω
Zℓ
ψ ⊗Zℓ Qℓ ≃ Π1 ⊗Qℓ Θ(Π1) and eΠ1ω

Zℓ
ψ ⊗Zℓ Fℓ ≃ π1 ⊗Fℓ Θ(π1).

In particular Θ(π1) has finite length. This allows us to generalise Kudla’s result:

Theorem B. Suppose ℓ does not divide the pro-orders of H1 and H2. We assume that
Θ(Π1) is the first occurrence index of Π1 in the local theta correspondence i.e. Θ(Π1) is
irreducible cuspidal. Then Θ(π1) = rℓ(Θ(Π1)) is irreducible cuspidal.
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Notations

Let F be a field of characteristic different from 2, that is either a finite field of car-
dinality q or a non-archimedean local field of residue characteristic q. We write q = pf .
When F is local non-archimedean, we let OF be its ring of integers and kF its residue
field and we fix a uniformiser ϖF in OF . Let ( , )F be the quadratic Hilbert symbol,
which is trivial if F is finite. If F is local non-archimedean and V is a finite dimensional
F -vector space, a lattice in V is a free OF -module of rank the dimension of V .

Let (W, ⟨ , ⟩) be a symplectic vector space of dimension n = 2m over F . A subspace
X ⊆ W is totally isotropic if ⟨ , ⟩|X×X is identically zero. A totally isotropic subspace is
maximal if and only if it has dimension m. Such a maximal space is called a Lagrangian
in W . A complete polarisation W = X ⊕ Y is made of two transverse Lagrangians X
and Y in W . The symplectic group Sp(W ) is the group of isometries of W .

Let G be a locally profinite group i.e. a locally compact totally disconnected topo-
logical group. Let K be a compact open subgroup of G. The pro-order of K is the
least common multiple of the cardinality of the finite quotients of K [Vig96, I.1.5]. The
pro-order |G| of G is the least common multiple of the |K|’s where K runs over all
compact open subgroups of G. When G is a reductive group over F , i.e. the F -points
of a reductive algebraic group defined over F , we usually have |G| = nfp

k where nf ∈ N
is prime-to-p and k ∈ N ∪ {∞}.

Let R be a field of characteristic ℓ. Let C∞
c (G,R) be the space of locally constant

compactly supported functions on G valued in R. If G contains a compact open subgroup
of invertible pro-order in R, there exists a Haar measure µ of G with values in R by
[Vig96, I.2.4] and all such measures are unique up to a scalar in R×. If a compact open
subgroup K has invertible pro-order in R, there exists a unique measure µK such that
K has volume 1. We call it the normalised measure on K. After fixing a measure of G,
we can endow C∞

c (G,R) with a structure of R-algebra and we denote this algebra by
HR(G) and call it the Hecke algebra.

An R[G]-module V is smooth if StabG(v) = {g ∈ G | g · v = v} is open in G for all
v ∈ V . We denote by RepR(G) the category of smooth R[G]-modules, also called smooth
representations of G. In an arbitrary R[G]-module V , one can consider the smooth
vectors V ∞ i.e. the subspace of v ∈ V such that StabG(v) is open. Then V 7→ V ∞

is a functor, which is left-exact but not right-exact. For V ∈ RepR(G), we define its
contragredient V ∨ ∈ RepR(G) by V ∨ = HomR(V,R)∞. Let H be a closed subgroup
of G, we define a functor IndGH : RepR(H) → RepR(G) where for σ ∈ RepR(H), we
associate the space IndGH(σ) of functions f : G → σ such that f(hg) = σ(h)f(g) and
f is smooth, endowed with the smooth G-action g · f(g′) = f(g′g). We also define the
subfunctor indGH of IndGH by moreover requiring that f has compact support modulo H.
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For n ∈ N, we denote by ζn ∈ C the usual primitive n-root of unity i.e. ζn = e
2iπ
n .

If there exists a non-trivial smooth (additive) character ψ : F → R×, then necessarily
the characteristic ℓ of R is different from p. Moreover R must contain enough p-roots or
p-power roots of unity. Let Z[ζp∞ ] = ∪kZ[ζpk ] and let

A =


Z[1

p , ζp∞ ] if char(F ) = 0;

Z[1
p , ζp] if char(F ) > 0.

Then there exists a non-trivial character ψ : F → R× if and only if R can be endowed
with a structure of A-algebra. We always assume R satisfies this condition.

1. The Heisenberg representation

The Heisenberg group H(W, ⟨ , ⟩), or simply H, is the set W × F endowed with the
product topology and the group law

(w, t) · (w′, t′) =
(
w + w′, t+ t′ + ⟨w,w′⟩

2

)
.

We identify F with the centre of H via the isomorphism of topological groups t 7→ (0, t)
and identify W with the subset W × {0} of H via the homeomorphism δ : w 7→ (w, 0).

1.1. We generalise the Stone-von Neumann theorem [MVW87, Chap 2, Th I.2] to the
modular setting. Recall that R is a coefficient field such that there exists a non-trivial
smooth character ψ : F → R×, so the characteristic ℓ of R has to be different from p.

Theorem 1.1. Let ψ : F → R× be a non-trivial character. Up to isomorphism, there
exists a unique irreducible representation (ρψ, S) ∈ RepR(H) with central character ψ.

Proof. The proof is the same as [MVW87, Chap 2, Th I.2]. We recall its main ingredients.
A first candidate is indHF (ψ) which has the right central character, but it fails to be
irreducible. We can construct larger subgroups than F so that the induced representation
is irreducible, as we now explain. Let A be a closed subgroup of W and define its
orthogonal as A⊥ = {w ∈ W | ∀a ∈ A, ψ(⟨w, a⟩) = 1}. The arguments in [MVW87,
Chap 2, I.3] are still valid in the modular setting, so we obtain:

Lemma 1.2. We suppose that A is self-dual i.e. A = A⊥. Then:
a) there exists a smooth character ψA of the subgroup AH = A × F of H whose

restriction to F is ψ ;
b) for all smooth characters ψA of AH extending ψ, the compact induction indHAH (ψA)

is irreducible.

As a result of this lemma, there exist irreducible representations (ρψ, S) of H with
central character ψ. They enjoy very explicit models thanks to these self-dual subgroups,
such as Lagrangians and self-dual lattices.

To show uniqueness, we follow [MVW87, Chap 2, Lem I.5 & I.6] whose proofs rely
on the inversion formula for the Fourier transform, which is still valid in the modular
setting [Vig96, I.3.10]. This leads to:
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Lemma 1.3. Let (ρψ, S) ∈ RepR(H) be irreducible with central character ψ. Then

ρ∨
ψ ⊗R ρψ ≃ indHF (ψ) in RepR(H ×H).

The uniqueness of (ρψ, S) is a consequence of this lemma as indHF (ψ) is ρψ-isotypic. □

1.2. For ψ a non-trivial character, we call the unique isomorphism class (ρψ, S) above
the Heisenberg representation associated to ψ. By extension, any representation in this
unique class is also called the Heisenberg representation associated to ψ.

The representations SA = indHAH (ψA) in Lemma 1.2 provide explicit models of the
Heisenberg representation associated to ψ. They are particularly important when A is
a Lagrangian (Schrödinger model) or A is a self-dual lattice (lattice models when F is
local non-archimedean).

1.2.1. Schrödinger model. Let W = X ⊕ Y be a complete polarisation. Then X is a
self-dual subgroup of W . Let SX = indHXH (ψX) where ψX(x, t) = ψ(t) is a character of
XH = X × F . The restriction to Y induces an isomorphism SX ≃ C∞

c (Y ) where the
action on the right-hand side is given for h = (wX + wY , t) ∈ H and f ∈ C∞

c (Y ) by

ρψ(h)f : y ∈ Y 7→ ψ

(
⟨y, wX⟩ + 1

2⟨wY , wX⟩ + t

)
f(y + wY ) ∈ R.

1.2.2. Lattice model. Let F be local non-archimedean. Let A ⊆ W be a self-dual lattice.
Such lattices always exist according to [MVW87, Chap 2, I.4 (2)]. By Lemma 1.2, we
can extend ψ as a character ψA of AH = H×F and set SA = indHAH (ψA). The restriction
to W ⊆ H induces an isomorphism between SA and the functions in C∞

c (W ) satisfying
f(a+ w) = ψA(⟨w, a⟩)f(w) , for all a ∈ A and w ∈ W.

The action of h = (w, t) ∈ H on f ∈ C∞
c (W ) as above is given by

ρψ(h)f : w′ 7→ ψ(t)ψ
(1

2⟨w′, w⟩
)
f(w′ + w).

1.3. We generalise to the modular setting a few classical properties – which appear
in [MVW87, Chap 2, I.6 & I.8] – of the complex Heisenberg representation. If A is a
self-dual lattice in W , we set SA = indHAH (ψA) where ψA extends ψ.
Proposition 1.4. Let ρψ be the Heisenberg representation associated to ψ.

a) The representations ρ∨
ψ and ρψ−1 are isomorphic.

b) The representation ρψ is admissible, absolutely irreducible and satisfies Schur’s
lemma i.e. EndR[H](ρψ) = R.

c) Any smooth representation of H with central character ψ is semi-simple.
d) Let:

• (W1, ⟨ , ⟩1) and (W2, ⟨ , ⟩2) be two symplectic spaces over F ;
• W = W1 ⊕W2 their orthogonal sum;
• H(W1, ⟨ , ⟩1) and H(W2, ⟨ , ⟩2) the associated Heisenberg groups;
• ρ1

ψ and ρ2
ψ the respective Heisenberg representations associated to ψ.

Then the representation ρ1
ψ ⊗R ρ

2
ψ ∈ RepR(H(W, ⟨ , ⟩)) can be identified with the

Heisenberg representation associated to ψ in the following model:
(w1 + w2, t) 7→ ψ(t) ×

(
ρ1
ψ((w1, 0)) ⊗ ρ2

ψ((w2, 0))
)
.



8 JUSTIN TRIAS

Proof. a) Both are irreducible and have central character ψ−1, we apply Theorem 1.1.
b) Because ρ∨

ψ ≃ ρψ−1 , we also have (ρ∨
ψ)∨ ≃ ρψ. Therefore ρψ is reflexive, so ρψ has to be

admissible. By compatibility of the induction with scalar extension, the representation
SA ⊗R R

′ ∈ RepR′(H) is the Heisenberg representation associated to ψ′ : F → (R′)×

obtained by composition. This implies that ρψ is absolutely irreducible by taking R′ = R
an algebraic closure of R. The representation ρψ is admissible and absolutely irreducible,
it satisfies Schur’s lemma by [Vig96, I.6.9].
c) From Lemma 1.3, the representation indHF (ψ) is ρψ-isotypic. In the category of rep-
resentations with central character ψ, the latter indHF (ψ) is projective, therefore ρψ
is projective as well. We deduce that ρψ is a progenerator of the category and since
EndR[H](ρψ) = R by b), the category is semi-simple by Morita equivalence.
d) Set H1, H2 and H for the groups appearing. We have a surjective group morphism

H1 ×H2 → H

((w1, t1), (w2, t2)) 7→ (w1 + w2, t1 + t2)

whose kernel is {((0, t), (0,−t)) | t ∈ F}. The representation ρ1
ψ ⊗R ρ

2
ψ factors through

this group morphism, so it defines a representation of H. By taking compatible complete
polarisations W1 = X1 ⊕ Y1 and W2 = X2 ⊕ Y2, we see that

indH1
X1×F (ψX1) ⊗R indH2

X2×F (ψX2) ≃ indH1×H2
(X1×F )×(X2×F )(ψX1 ⊗R ψX2) ≃ indHX×F (ψX).

Therefore ρ1
ψ ⊗R ρ

2
ψ ∈ RepR(H) is the Heisenberg representation associated to ψ. □

1.4. We describe the change of models in the Heisenberg representation associated to ψ.
Let A1 and A2 be self-dual subgroups in W . As OF is local, principal and complete, the
subgroup A1 +A2 has finite index in a closed subgroup of W by [Vig96, I.C.5]. Therefore
A1 + A2 is closed itself, so (A1 ∩ A2)⊥ = A1 + A2, which improves [MVW87, Chap 2,
Rem I.7]. Let ψA1 and ψA2 be characters restricting to ψ, then we have the following
explicit formula to construct an intertwining operator between SA1 and SA2 , also called
a change of models:

Proposition 1.5. Let µ be a Haar measure of A1,H ∩A2,H\A2,H with values in R. Let
ω ∈ W satisfying ψA1((a, 0))ψA2((a, 0))−1 = ψ(⟨a, ω⟩) for all a ∈ A1 ∩ A2. Then the
map IA1,A2,µ,ω associating to f ∈ SA1 the function

IA1,A2,µ,ωf : h 7−→
∫
A1,H∩A2,H\A2,H

ψA2(a)−1f((ω, 0)ah) dµ(a)

is an isomorphism of representations in HomR[H](SA1 , SA2) ≃ R.

Proof. Same proof as [MVW87, Chap 2, Lem I.7], plus Proposition 1.4 b). □

The expression of the intertwining operator becomes simpler when ψA1(a, t) = ψ(t)
and ψA2(a, t) = t, in which case ω = 0 works. We can always choose the characters ψA1
and ψA2 of this form provided p ̸= 2 or A1 and A2 are both Lagrangians. In this case,
we simply obtain IA1,A2,µ ∈ HomR[H](SA1 , SA2) where

IA1,A2,µf : h 7−→
∫
A1∩A2\A2

f((a, 0)h)dµ(a).
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2. The R-metaplectic group and models of the Weil representation

2.1. Let ψ : F → R× be a non-trivial character and let (ρψ, S) ∈ RepR(H) be a model
of the Heisenberg representation. The group Sp(W ) acts on the Heisenberg group H via

G×H → H
(g, (w, t)) 7→ g · (w, t) = (gw, t) .

This action fixes the centre of H and therefore preserves the isomorphism class of the
Heisenberg representation. In other words, for g ∈ Sp(W ), the representation (ρgψ, S)
defined by ρgψ(h) = ρψ(g−1 · h) is another model of the Heisenberg representation as-
sociated to ψ. Theorem 1.1 ensures ρψ and ρgψ are isomorphic. Therefore there exists
Mg ∈ GLR(S), which is unique up to a scalar thanks to Proposition 1.4 b), such that
Mg ∈ HomR[H](ρψ, ρ

g
ψ) i.e. for all h ∈ H we have

Mgρψ(h)M−1
g = ρgψ(h).

Assume we have fixed Mg as above for each g ∈ Sp(W ). We then obtain a projective
representation σS of Sp(W ) which does not depend on the choice of the Mg’s via

g ∈ Sp(W ) 7→ red(Mg) ∈ PGLR(S).
We can lift σS to an actual representation of a central extension of Sp(W ) via the fibre
product construction. Indeed, we consider

S̃p
R

ψ,S(W )

pS

��

ωψ,S // GLR(S)

red
��

Sp(W ) σS // PGLR(S)

where S̃p
R

ψ,S(W ) = Sp(W )×PGLR(S) GLR(S) is the fibre product of the group morphisms
σS and red above PGLR(S). The group morphisms pS and ωψ,S above are respectively
the first and second projections.

Definition 2.1. We call (ωψ,S , S) the Weil representation associated to ψ and S.

The following proposition is rather straightforward, using Proposition 1.5 and the fact
that isomorphisms of central extensions are parametrised by characters and the group
Sp(W ) is perfect, unless Sp(W ) ≃ SL2(F3).

Proposition 2.2. The group S̃p
R

ψ,S(W ) is a central extension of Sp(W ) by R× i.e.

1 → R× iS→ S̃p
R

ψ,S(W ) pS→ Sp(W ) → 1
is an exact sequence where iS : λ 7→ (idW , λidS) has central image.

If S and S′ are two models of ρψ, and ϕ : S → S′ is an isomorphism of representations,
the isomorphism of central extensions

S̃p
R

ψ,S(W ) → S̃p
R

ψ,S′(W )
(g,M) 7→ (g, ϕMϕ−1)

does not depend on the choice of ϕ. We denote it by ΦS,S′.
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Except in the case F = F3 and dimFW = 2, there a unique isomorphism of central
extensions between S̃p

R

ψ,S(W ) and S̃p
R

ψ,S′(W ), which is given by ΦS,S′.

In other words, the isomorphism class of S̃p
R

ψ,S(W ) as a central extension is independ-
ent of S and all such central extensions are canonically identified thanks to ΦS,S′ .

Definition 2.3. We call this isomorphism class of central extensions the R-metaplectic
group. By extension, any group in this isomorphism class is an R-metaplectic group.

2.2. Let (ρd, IndHF (ψ)) be the representation where H acts on the right-hand side of
functions. For all self-dual subgroup A in W , we can embed the model of the Heisenberg
representation (ρψ, SA) = (ρψ, indHAH (ψA)) as a subrepresentation of ρd.

The action of g ∈ Sp(W ) on H gives an isomorphism

Ig : indHAH (ψA) → indHgAH (ψgA)
f 7→ g · f

where g · f : h 7→ f(g−1 · h) and ψgA : a ∈ gAH 7→ ψA(g−1 · h) ∈ R×. Then for all h ∈ H

Ig ◦ ρd(h) = ρd(g−1 · h) ◦ Ig.

Composing with the change of models IgA,A,µ,ω of Proposition 1.5, we obtain

SA
Ig−→ SgA

IgA,A,µ,ω−→ SA,

which satisfies IgA,A,µ,ω ◦ Ig ◦ ρd(h) = ρd(g−1 · h) ◦ IgA,A,µ,ω ◦ Ig for all h ∈ H. Hence

(g, IgA,A,µ,ω ◦ Ig) ∈ S̃p
R

ψ,SA
(W ).

In particular IgA,A,µ,ω is a multiple of the identity for all g ∈ Stab(A) ∩ Stab(ψA) i.e.

g ∈ Stab(A) ∩ Stab(ψA) 7→ (g, Ig) ∈ S̃p
R

ψ,SA
(W )

is a group morphism.

2.3. Here are the most commonly used explicit models of the Weil representation.

2.3.1. Schrödinger model. Let X be a Lagrangian. We consider the Schrödinger model
Sψ,X associated to ψ and X. We recall that the character ψX is trivial on X.

Let P (X) be the parabolic in Sp(W ) stabilising X. Then as we have just remarked,
the following map is a group morphism

p ∈ P (X) 7→ (p, Ip) ∈ S̃p
R

ψ,SX
(W ).

Choosing a complete polarisation W = X ⊕ Y , we identify Sψ,X with C∞
c (Y ). Then

Ipf : (y, 0) 7→ ψ(1
2⟨a∗y, b∗y⟩)f((a∗y, 0)), for p =

[
a b
0 (a∗)−1

]
∈ P (X).

It provides an embedding of M(X) and N(X) in the R-metaplectic group.
We also have

(g, IY,X,µX ◦ Ig) ∈ S̃p
R

ψ,SX
(W ), for g =

[
0 c

(c∗)−1 0

]
∈ Sp(W ),
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where IY,X,µX is simply a Fourier transform, so the composition is given by

IY,X,µX ◦ Igf : (y, 0) 7→
∫
X
ψ(⟨x, y⟩)f(c−1x)dµX(x).

2.3.2. Mixed Schrödinger model. Let 0 ⊊ X ⊊W be totally isotropic. Let Y be a totally
isotropic subspace in duality with X, we have a decomposition W = X ⊕W 0 ⊕Y where
W 0 is the orthogonal of the symplectic subspace X ⊕ Y . Let (ρ0

ψ, S
0) be the Heisenberg

representation of H(W 0) associated to ψ. We realise the Heisenberg representation of
H(X ⊕ Y ) on the Schrödinger C∞

c (Y ) associated to ψ and X. Proposition 1.4 ensures
that S = C∞

c (Y ) ⊗R S
0 is a model of the Heisenberg representation of H(W ) associated

to ψ. Let P (X) be the stabiliser of X in Sp(W ) and j : P (X) → Sp(W 0) the projection
to the symplectic part of the Levi M(X) of P (X). We have a natural section of j via
the inclusion of Sp(W 0) in M(X). This embedding induces an isomorphism of groups
p ∈ P (X) 7→ (pu−1, u) ∈ Ker(j) ⋊ Sp(W 0).

Lemma 2.4. We have an isomorphism of groups

P (X) ×Sp(W 0) S̃p
R

ψ,S0(W 0) ∼→ p−1
S (P (X))

(p, ũ) 7→ (p, Ipu−1 ⊗ ωψ,S0(ũ))
where the fibre product on the left-hand side is given by j and pS0.

In particular we can consider the action of Ker(j) via the group morphism

p ∈ Ker(j) 7→ (p, Ip ⊗ IdS0) ∈ S̃p
R

ψ,S(W ).

We give the actions of subgroups/subsets of interest. Let f ∈ C∞
c (Y )⊗S0 = C∞

c (Y, S0).
• For all p = (a, u) ∈ M(X) = GL(X) × Sp(W 0), we have

(p, ũ) · f : y 7→ ωψ,S0(ũ) · (f(a∗y)).

• For all p =

 IdX 0 s
0 IdW 0 0
0 0 IdY

 ∈ Sp(W ), we have

(p, (IdW 0 , IdS0)) · f : y 7→ ψ(1
2⟨sy, y⟩)f(y).

• For all p =

 IdX v 0
0 IdW 0 −v∗

0 0 IdY

 ∈ Sp(W ), we have

(p, (IdW 0 , IdS0)) · f : y 7→ ρ0
ψ((v∗y, 0)) · (f(y)).

2.3.3. Lattice model. Let F be local non archimedean and assume p ̸= 2. Let A be a
self-dual lattice in W . Since p ̸= 2, we can set ψA(a, t) = ψ(t) and therefore choose
ω = 0 in Proposition 1.5. For all g ∈ Sp(W ), the set A/gA ∩ A is finite and we endow
it with the counting measure µ. An explicit computation gives

IgA,A,µ ◦ Igf : (w, 0) 7→
∑

a∈A/gA∩A
ψ(1

2⟨a,w⟩)f((g−1(a+ w), 0)).
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If K is the stabiliser of A in Sp(W ), we have a group morphism

k ∈ K 7→ (k, Ik) ∈ S̃pψ,SA(W )

which is a smooth representation k ∈ K 7→ ωψ,SA((k, Ik)) = Ik ∈ GLR(SA).

Remark 2.5. The lattice model also exists when p = 2, except that the character ψA
can’t be extended trivially to A and the formulas usually become inoperable.

2.3.4. Another model. Let (ρψ, S) be a model of the Heisenberg representation of H
and let g ∈ Sp(W ). For all s ∈ S, the function

w ∈ W 7→ ψ(⟨w, g−1w⟩
2 )ρψ((IdW − g−1)w, 0)s ∈ S

is invariant under Ker(IdW −g−1) i.e. factors through a function on W/Ker(idW −g−1).

Lemma 2.6. Let g ∈ Sp(W ) and let µg be a Haar measure of W/Ker(IdW − g−1).
• If F is finite, we define M [g] ∈ EndR(S) by

M [g] : s 7→
∫
W/Ker(1−g−1)

ψ(⟨w, g−1w⟩
2 )ρψ((IdW − g−1)w, 0))s dµg(w).

• If F is local non-archimedean, for all lattice L in W/Ker(IdW − g−1), define

ML[g] : s 7→
∫
L
ψ(⟨w, g−1w⟩

2 )ρψ((IdW − g−1)w, 0))s dµgw

For all s ∈ S, there exist a lattice Ls and an element M [g]s ∈ S such that

ML[g]s = M [g]s for all lattices L ⊇ Ls.

In this sense ML[g]s is independent of L and M [g] : s 7→ M [g]s is in EndR(S).

Then M [g] ∈ HomH(ρψ, ρgψ) i.e. (g,M [g]) ∈ S̃p
R

ψ,S(W ).

Proof. Same proof as [MVW87, Chap 2, Lem II.2]. Note that, for L a lattice in W , it is
elementary to check that the following map belongs to HomL×F (ρψ, ρgψ)

s 7→
∫
L
ρgψ(w, 0)−1ρψ(w, 0)sdµgw.

Furthermore ρgψ((w, 0))−1ρψ((w, 0)) = ψ(⟨w, g−1w⟩
2 )ρψ(((IdW − g−1)w, 0)). □

Lemma 2.7. Let g1, g2 ∈ Sp(W ). Assume that g1g2 = g2g1. Then

M [g1]M [g2] = M [g2]M [g1].

Proof. Same proof as [MVW87, Chap. 2, Lem. II.5]. □

3. Properties of the R-metaplectic group and the Weil representation

Let S be a model of the Heisenberg representation associated to ψ : F → R×.



MODULAR WEIL REP. AND COMPATIBILITY OF CUSPIDALS WITH CONGRUENCES 13

3.1. If G is a group, we denote by [G,G] its derived subgroup. We have the following
properties for the R-metaplectic group:

Theorem 3.1. Let Ŝp
R

ψ,S(W ) be the derived subgroup of S̃p
R

ψ,S(W ).
a) If F is finite, or if the characteristic ℓ of R is 2, there exists a section of pS

Sp(W ) → S̃p
R

ψ,S(W ).
Except in the exceptional case F = F3 and dimFW = 2, this group morphism is
unique. This embedding of Sp(W ) induces a group isomorphism

Ŝp
R

ψ,S(W ) ≃ [Sp(W ),Sp(W )].
Here [Sp(W ),Sp(W )] = Sp(W ), except in the exceptional case.

b) If F is local non-archimedean and ℓ ̸= 2, such a section of pS does not exist.
However, the derived subgroup fits into the exact sequence

1 → {±1} iS→ Ŝp
R

ψ,S(W ) pS→ Sp(W ) → 1.

The group Ŝp
R

ψ,S(W ) is the unique two-fold cover of Sp(W ) contained in S̃p
R

ψ,S(W ).
c) The group Ŝp

R

ψ,S(W ) is perfect, except in the exceptional case.
Proof. a) If such a group morphism σ exists, it induces an isomorphism of central ex-
tensions

(g, λ) ∈ Sp(W ) ×R× → σ(g)iS(λ) ∈ S̃p
R

ψ,S(W ).
Since two such isomorphisms differ by a character, we deduce that σ is unique, ex-
cept in the exceptional case. Moreover, the derived subgroup of the left-hand side is
[Sp(W ), Sp(W )]. There remains to prove the existence of σ. In the finite case, it is a
consequence of [Ste62, Th 3.3] as the symplectic group is its own universal covering in the
sense of [Moo68]. This means that any central extension of the symplectic group splits.
We deal with the non-archimedean local field case when ℓ = 2 in the next paragraph.

b) Suppose F is local non-archimedean. When R = C, there exists by [Wei64] a
character AC → C× of a central extension AC of Sp(W ) by C× whose kernel is Ŝp(W ),
the unique non-trivial central extension of Sp(W ) by {±1}. The latter group is perfect.
It is the derived subgroup of AC. This result was generalised in [CT13, §5] when R is an
integral domain of characteristic ℓ ̸= p and such that there exists a non-trivial character
ψ : F × R×. In particular our coefficient field satisfies these assumptions. We deduce
there exists a character AR → R× of a central extension AR of Sp(W ) by R× whose
kernel is Ŝp(W ) if ℓ ̸= 2 and Sp(W ) if ℓ = 2. These two groups are perfect. We refer to
[Tri19, Ann A.2] for details about the identification well-known of the experts between
AR and the R-metaplectic group.

We obtain a character S̃p
R

ψ,S(W ) → R× whose kernel is a perfect group, and contains
the derived subgroup, therefore it is equal to the derived subgroup. When ℓ = 2, this
group is Sp(W ) and the same argument as in the finite case shows that the section of
pS thus obtained is unique. When ℓ ̸= 2, this is the non-trivial two-fold cover of Sp(W ).
Moreover the R-metaplectic group does not contain Sp(W ) as a subgroup according to
[CT13, Th 5.4], so any two-fold cover of Sp(W ) in the R-metaplectic group is unique.

c) The symplectic group and its non-trivial double cover are known to be perfect. □
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We endow R with the discrete topology. Let S be a vector space over R. We endow
it with the discrete topology. The compact-open topology on GLR(S) is generated by
the prebasis Ss,s′ = {g ∈ GLR(S) | gs = s′} for s and s′ running over S. Then, a
representation S of a topological group G is smooth if and only if the associated group
morphism G → GLR(S) is continuous.

Proposition 3.2. The R-metaplectic group S̃p
R

ψ,S(W ) is the fibre product in the category
of topological groups of the continuous morphisms σS and red. It is a topological sub-
group of Sp(W )×GLR(S) and a topological central extension of Sp(W ) by R×. Moreover
the isomorphisms ΦS,S′ above are isomorphisms of topological central extensions.

Proof. When F is finite, the topology is discrete, so the groups appearing are all topo-
logical groups and all maps are continuous. Let F be local non-archimedean. First of
all, the map red is continuous by definition of the quotient topology.

There remains to prove that σS is continuous. Note that ΦS,S′ induces an isomorphism
of topological groups M ∈ GLR(S) → ϕMϕ−1 ∈ GLR(S′), therefore it is enough to find
one S such that σS is continuous since ϕσS(g)ϕ−1 = σS′(g) for g ∈ Sp(W ).

Lemma 3.3. Let L be a self-dual lattice in W and let SL be the lattice model associated
to L and ψ. Then σSL is continuous.

Proof. Let K be the stabiliser of L in Sp(W ). It is compact open subgroup. Let k ∈ K
and consider the linear map

Nk : indHLH (ψL) → indHLH (ψkL)
f 7→ k · f

where k · f : h 7→ f(k−1 · h) and ψkL : (l, t) 7→ ψL((k−1l, t)).
When p ̸= 2, we can choose ψL such that ψL(l, t) = ψ(t). Thus ψkL = ψL for all k ∈ K

and Nk ∈ GLR(SL) satisfies
Nk ◦ ρψ = ρk

−1
ψ ◦Nk,

or equivalentlyNk◦ρkψ = ρψ◦Nk. Therefore (N,SL) whereN : k 7→ Nk is a representation
of K lifting σSL in the sense that σS(k) = red(Nk) for all k ∈ K. Moreover N is a
smooth representation because the action of k ∈ K on f ∈ SL ≃ C∞

c (W ) is given by
k · f(w) = f(k−1w) and is easily checked to be smooth.

When p = 2, the character ψ can’t be extended trivially to L × {0}. However, there
exists n ∈ N such that ϖn

FL× Ker(ψ) is a subgroup of Ker(ψ). Fix such a n and let Kn

be the kernel of the reduction morphism K → GL(L/ϖn
FL). Then the same arguments

apply to Kn, namely N : k ∈ KN 7→ Nk ∈ GLR(SL) which is smooth and lifts σSL .
We have shown there exists a smooth representation N lifting σSL of a compact open

subgroup K of Sp(W ) i.e. σSL = red ◦N . Since N and red are continuous, the group
morphism σSL is continuous on K. This implies σSL is continuous on Sp(W ). □

Therefore S̃p
R

ψ,S(W ) is the fibre product in the category of topological groups of the
continuous group morphisms σS and red above PGLR(S). By definition, this fibre
product is a topological subgroup of the product Sp(W ) × GLR(S). As we already
remarked, the isomorphism of central extensions ΦS,S′ are homeomorphisms. □
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Because the second projection ωψ,S : S̃p
R

ψ,S(W ) → GLR(S) is continuous, we obtain:

Corollary 3.4. The Weil representation (ωψ,S , S) is smooth.

3.2. The first projection pS is also continuous and defines a fibre bundle:

Proposition 3.5. The map pS : S̃p
R

ψ,S(W ) → Sp(W ) has local trivialisations and this
turns the R-metaplectic group into a trivial fibre bundle of basis Sp(W ) and fibre R×.

Proof. Since the base Sp(W ) is locally profinite, any fibre bundle over Sp(W ) is trivial.
So we simply show that pS admits local trivialisations since the fibres of pS are all R×.
In the proof of Lemma 3.3, we found a continuous group morphism N : K → GLR(S)
with K a compact open subgroup of Sp(W ). As the embedding K ↪→ Sp(W ) is clearly
continuous, the universal property of the fibre product provides a continuous embedding
of K in the R-metaplectic group inducing a local trivialisation K × R× ≃ p−1

S (K). As
pS is a continuous group morphism, it admits local trivialisations everywhere. □

We deduce that:

Corollary 3.6. The R-metaplectic group S̃p
R

ψ,S(W ) is a locally profinite group and its
derived subgroup Ŝp

R

ψ,S(W ) is open.

Proof. We use the trivialisation K×R× ≃ p−1
S (K) from the previous proof to obtain an

embedding of K in the R-metaplectic group as an open subgroup. Since this image of K
is open, and compact, there exists a basis of neighbourhood of the identity made of open
compact subgroups. Note that the quotient of the R-metaplectic group by its derived
subgroup is the discrete group R×/{±1}. Therefore the derived subgroup is open. □

3.3. Let X be Lagrangian in W . Let SX be the model of the Heisenberg representation
associated to ψ and X. The formulas of the Schrödinger model give:

Proposition 3.7. We have p−1
SX

(P (X)) ≃ P (X) ×R×.

In particular any subgroup of P (X) is split in the R-metaplectic group. Furthermore,
similarly to [MVW87, Chap 2, Lem II.9], there exists a unique splitting of N(X) in the
R-metaplectic group valued in the derived subgroup and normalised by P (X). Moreover:

Proposition 3.8. Let F be local non-archimedean. Let A be a self-dual lattice in W .
The natural embedding k ∈ K 7→ (k, Ik) ∈ S̃p

R

ψ,SA
(W ) of the open compact subgroup

K = Stab(A) ∩ Stab(ψA) of Sp(W ) has image in Ŝp
R

ψ,SA
(W ).

Proof. Same proof as [MVW87, Chap. 2, Lem. II.10]. □

3.4. Let S̃p
R

ψ (W ) be the R-metaplectic group associated to ψ from Definition 2.3. Let S
be a model of the Heisenberg representation associated to ψ. By definition, there exists
an isomorphism of central extensions φS between MpRψ (W ) and S̃p

R

ψ,S′(W ). In addition
φS is unique, unless Sp(W ) ≃ SL2(F3). For any other model S′, we fix isomorphisms
between S̃p

R

ψ (W ) and S̃p
R

ψ,S′(W ) by setting φS′ = ΦS,S′ ◦ φS .
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Definition 3.9. The representations (ωψ,S◦φS , S) and (ωψ,S′ ◦φS′ , S′) of RepR(S̃p
R

ψ (W ))
are isomorphic and we call their isomorphism class the Weil representation associated
to ψ. By extension, any model in this isomorphism class is also the Weil representation.

Remark 3.10. In the exceptional case, the identification φS is not unique. Therefore
the Weil representation depends on the identification given by φS .

3.5. Let ωRψ,W , or simply ωRψ , be the Weil representation associated to ψ.

Proposition 3.11. The smooth representation ωRψ is and admissible.

Proof. We first recall that ωRψ is smooth by Corollary 3.4. We now prove admissibility.
Let F be local non-archimedean and let A be a self-dual lattice in W . By definition
SA = indW×F

A×F (ψA) where ψA extends ψ to A× F . Let K be a compact open subgroup
in Stab(A). For all f ∈ SKA , let L be a lattice in W such that f is L-bi-invariant, i.e.
f(l + w, 0) = f(w, 0) for all l ∈ L and all w ∈ W , and for all k ∈ K and all l ∈ L, we
have ψA(k−1l, 0) = 1. We assume L ⊆ A, up to replacing L by L ∩ A. Then, for all
l ∈ L and all w ∈ W and all k ∈ K, we have

f((w, 0)) = f((w + l, 0)) = f(k−1(l + w, 0)) = f((k−1l,
1
2⟨k−1w, k−1l⟩)(k−1w, 0))

= ψA((k−1l, 0))ψ(1
2⟨w, l⟩)f(k−1(w, 0))

= ψ(1
2⟨w, l⟩)f((w, 0)).

We deduce that supp(f) is included in 2L⊥ where L⊥ appears in Lemma 1.2. The vector
space SKA has dimension at most |(A× F )\(2L⊥ × F )/K|, which is finite. □

3.6. Let Ŝp
R

ψ (W ) be the derived subgroup of S̃p
R

ψ (W ). Let Z be the centre of Ŝp
R

ψ (W )
and let Z ′ = {z ∈ Z | z2 = 1}. The quotient morphism induces an isomorphism

S̃p
R

ψ (W )/Ŝp
R

ψ (W ) ≃ Z/Z ′ = R×/{±1}.

Note that the square map λ ∈ R× 7→ λ2 ∈ R× factors through R×/{±1} → R×. We let
χ2 : S̃p

R

ψ (W ) → R×/{±1} → R× be the composition with the quotient morphism. In
particular χ2(ĝλ) = λ2 for ĝ ∈ Ŝp

R

ψ (W ) and λ ∈ R×.
The next two propositions are consequences of Proposition 1.4, using a) and d).

Proposition 3.12. We have (ωRψ )∨ ≃ ωRψ−1 ⊗ χ2 in RepR(S̃p
R

ψ (W )). By restricting to
the derived subgroup, we obtain

(ωRψ )∨ ≃ ωRψ−1 in RepR(Ŝp
R

ψ (W )).

Proposition 3.13. If W = W1 ⊕W2 is an orthogonal sum, there exists a unique (resp.
canonical, in the exceptional case) group morphism

iW1,W2 : S̃p
R

ψ,S1(W1) × S̃p
R

ψ,S2(W2) → S̃p
R

ψ,S(W )



MODULAR WEIL REP. AND COMPATIBILITY OF CUSPIDALS WITH CONGRUENCES 17

which lifts the embedding Sp(W1) × Sp(W2) → Sp(W ) and commute to the fibre product
projections. Its kernel {((1Sp(W1), λIdS2), (1Sp(W2), λ

−1IdS2)) | λ ∈ R×} is isomorphic to
R× embedded anti-diagonally. We obtain by pullback a representation

ωRψ,W ◦ iW1,W2 ∈ RepR(S̃p
R

ψ,S1(W1) × S̃p
R

ψ,S2(W2))

which is isomorphic to ωRψ,W1
⊗ ωRψ,W2

.

4. Non-normalised Weil factor

We define in this section a non-normalised version of the Weil factor. Our construction
has the benefit to be more elementary and more direct than the construction of the usual
Weil factor. We then relate our factor to the usual Weil factor of [Wei64, Per81, RR93]
when R = C, and to its generalisation in [CT13] to coefficient fields R containing a
square root of q.

4.1. Let X be a vector space of finite dimension m over F . Since the pro-order of X is a
power of p and the characteristic ℓ of R is different from p, there exists a Haar measure
µ of X with values in R [Vig96, I.2.4]. We recall that a quadratic form Q over X is non-
degenerate if its radical rad(Q) = {x ∈ X | Q(x+y)−Q(y)−Q(x) = 0, for all y ∈ X} is
reduced to 0. Assume there exists a non-trivial smooth additive character ψ : F → R×.

Proposition 4.1. Let Q be a non-degenerate quadratic form over X. There exists a
unique element Ωµ(ψ ◦Q) ∈ R× such that for all f ∈ C∞

c (X) we have∫
X

∫
X
f(y − x)ψ(Q(x))dµ(x)dµ(y) = Ωµ(ψ ◦Q)

∫
X
f(x)dµ(x).

Proof. It is elementary to check that the linear form

µ′ : f ∈ C∞
c (X) 7→

∫
X

∫
X
f(y − x)ψ(Q(x))dµ(x)dµ(y) ∈ R

is a (non-zero) Haar measure of X with values in R. By uniqueness of the Haar measure
[Vig96, I.2.4], there exists a unique element c ∈ R× such that µ′ = cµ. □

As the notation suggests, the factor Ωµ(ψ ◦ Q) depends on µ. We now extend the
definition of our factor to degenerate quadratic forms. Note that any quadratic form Q
over X induces a non-degenerate quadratic form Qnd over XQ = X/rad(Q).

Definition 4.2. Let Q be a quadratic form over X. For µ a Haar measure of XQ with
values in R, we call Ωµ(ψ ◦Q) = Ωµ(ψ ◦Qnq) the non-normalised Weil factor.

4.2. Before reviewing some properties of this factor, we need to introduce a few nota-
tions. If X ′ is a vector space isomorphic to X, we denote by IsoF (X,X ′) the F -linear iso-
morphisms between X and X ′. We write AutF (X) for IsoF (X,X). If X∗ = HomF (X,F )
is the dual of X, the set IsoF (X,X∗) has a natural involution ρ 7→ ρ∗ given by duality
i.e. ρ∗(x) : y ∈ X 7→ ρ(y)(x) ∈ R for x ∈ X. The symmetric morphisms are the fixed
point for this operation and we denote them by

Isosym
F (X,X∗) = {ρ ∈ IsoF (X,X∗) | ρ = ρ∗}.
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If ρ ∈ Isosym
F (X,X∗), we define a quadratic form Qρ over X by setting Qρ(x) = ρ(x)(x)

for x ∈ X. The sets of linear isomorphisms aboove inherit a natural locally profinite
topology from the finite dimensional vector space HomF (X,X ′).

Let µ be a Haar measure of X with values in R. For ϕ ∈ AutF (X), the measure
ϕ · µ = µ ◦ ϕ−1 is a Haar measure of X. It is a scalar multiple of µ by uniqueness of the
Haar measure. Denote by |ϕ| ∈ R× the unique scalar such that ϕ · µ = |ϕ|µ. Then |ϕ|
does not depend on the choice of µ, we call it the modulus of ϕ. For any compact open
subgroup K of X, we have

|ϕ| = volϕ·µ(K)
volµ(K) = µ(ϕ−1(K))

µ(K) .

Moreover the modulus ϕ ∈ AutF (X) 7→ |ϕ| ∈ R× defines a smooth character. We also
have |ϕ| = |detF (ϕ)|F for ϕ ∈ AutF (X) = GLF (X). In particular |ϕ| ∈ qZ.

We can define a modulus map on IsoF (X,X∗) in the following way. Let µ be a Haar
measure of X with values in R. Let µ∗ be its dual measure i.e. the unique Haar measure
of X∗ such that the Fourier transform

Fµ : C∞
c (X) → C∞

c (X∗)
f 7→ Fµf

where Fµf : x∗ 7→
∫
X
ψ(x∗(x))f(x)dµ(x)

has inverse
Fµ∗ : C∞

c (X∗) → C∞
c (X)

h 7→ Fµ∗h
where Fµ∗h : x 7→

∫
X∗

ψ(−x∗(x))h(x∗)dµ∗(x∗).

For ρ ∈ IsoF (X,X∗), the measure ρ ·µ is a Haar measure of X∗, so there exists |ρ|µ ∈ R×

such that ρ · µ = |ρ|µµ∗ by uniqueness. As the notation suggests, the modules |ρ|µ does
depend on the choice of µ, but only up to a square in R×. For any compact open
subgroup K of X∗, we have

|ρ|µ = volρ·µ(K)
volµ∗(K) = µ(ρ−1(K))

µ∗(K) .

Moreover ρ ∈ IsoF (X,X∗) 7→ |ρ|µ ∈ R× is locally constant. This modulus map is
compatible with that of AutF (X) in the sense that |ρ ◦ ϕ|µ = |ρ|µ · |ϕ| for ϕ ∈ AutF (X)
and ρ ∈ IsoF (X,X∗). It is also invariant under duality i.e. |ρ|µ = |ρ∗|µ. When K is a
lattice of X, i.e. an open compact subgroup endowed with a structure of OF -module,
we have |ρ|µK ∈ qZ.

Proposition 4.3. Let Q be a quadratic form over X. Let µ be a Haar measure of XQ.
a) If Q is the zero quadratic form, then Ωµ(ψ ◦ 0) = µ({0}).
b) For all λ ∈ R×, we have:

Ωλµ(ψ ◦Q) = λ× Ωµ(ψ ◦Q).
c) If X ′ is a vector space of the same dimension as X and ϕ ∈ IsoF (X,X ′), we

define the quadratic form Qϕ = Q ◦ ϕ−1 over X ′. Its radical is ϕ(rad(Q)). Then
Ωϕ·µ(ψ ◦Qϕ) = Ωµ(ψ ◦Q).

In particular, if ϕ ∈ AutF (X) preserves the radical of Q i.e. ϕ(rad(Q)) = rad(Q),
we have

Ωµ(ψ ◦Qϕ) = |ϕ|−1 × Ωµ(ψ ◦Q).
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d) Let Q1 ⊕ Q2 be the sum of two quadratic form Q1 over X1 and Q2 over X2,
together with Haar measures µ1 of (X1)Q1 and µ2 of (X2)Q2 , then

Ωµ1⊗µ2(ψ ◦ (Q1 ⊕Q2)) = Ωµ1(ψ ◦Q1)Ωµ2(ψ ◦Q2).

e) The map ρ ∈ Isosym
F (X,X∗) 7→ Ωµ(ψ ◦Qρ) ∈ R× is locally constant.

f) Suppose R contains a square root of q. Fix q
1
2 ∈ R×. Let ρ ∈ Isosym

F (X,X∗) and
set |ρ|

1
2
µ = µ(K)q

k
2 for K any lattice in X and |ρ|µK = qk. The scalar

ω(ψ ◦Q 1
2ρ

) =
Ωµ(ψ ◦Q 1

2ρ
)

|ρ|
1
2
µ

.

is the usual Weil factor associated to Q 1
2ρ

.
g) For a ∈ F×, let Qa be the quadratic from Qa(x) = ax2 over F . Let µ be a Haar

measure of F . The scalar

Ωa,b = Ωµ(ψ ◦Qa)
Ωµ(ψ ◦Qb)

∈ R×

does not depend on the choice of µ. Moreover, for all a and b in F×, we have

(a, b)F = Ωµ(ψ ◦Q1)Ωµ(ψ ◦Qab)
Ωµ(ψ ◦Qa)Ωµ(ψ ◦Qb)

= Ωab,1
Ωa,1Ωb,1

.

Proof. a) b) c) The first two points are direct consequences of the definition of the non-
normalised Weil factor. The third one comes from a change of variables x = ϕ−1(x′)
which gives Ωµ(ψ ◦ Q) = Ωϕ·µ(ψ ◦ Qϕ). When ϕ ∈ AutF (X) preserves rad(Q) then
Ωµ(ψ ◦Q) = Ωϕ·µ(ψ ◦Qϕ) = |ϕ|Ωµ(ψ ◦Qϕ) by b) and ϕ · µ = |ϕ|µ.

d) This is a consequence of the compatibility of Haar measures with products of
spaces. Here X1 × X2 = X1 ⊕ X2 and C∞

c (X1) ⊗ C∞
c (X2) ∼= C∞

c (X1 ⊕ X2) is the
canonical isomorphism induced by (f1 ⊗ f2)(x1 ⊕ x2) = f1(x1)f2(x2). Then µ1 ⊗ µ2 is a
Haar measure of (X1)Q1 ⊕ (X2)Q2 = (X1 ⊕ X2)Q1⊕Q2 and we can decompose integrals
accordingly to obtain the result.

e) This follows from the fact that, if f ∈ C∞
c (X) is fixed, the map

ρ 7→
∫
X

∫
X
f(y − x)ψ(Qρ(x))dµ(x)dµ(y) is locally constant.

f) Note that |ρ|
1
2
µ = µ(K)q

k
2 does not depend on the choice of K as µK′ = µK′(K)µK

and |ρ|µK′ = µK′(K)2|ρ|µK and µ = µ(K)µK , so µ(K ′) = µ(K)µK(K ′). To prove the
link with the classical Weil factor, we use [CT13, Prop 3.3] evaluated at x∗ = 0, which
gives the Weil factor γ of Q 1

2ρ
as the scalar satisfying∫

X

∫
X
f(y − x)ψ(Q 1

2ρ
(x))dµ(x)dµ(y) = γ |ρ|

1
2
µ

∫
X
f(x)dµ(x).

Therefore Ωµ(ψ ◦Q 1
2ρ

) = γ|ρ|
1
2
µ .

g) The scalar Ωa,b does not depend on µ thanks to b). We first assume that R contains
a square root of q. After fixing this square root, we can relate the non-normalised Weil
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factor to the usual Weil factor thanks to f) to obtain

Ωµ(ψ ◦Q1)Ωµ(ψ ◦Qab)
Ωµ(ψ ◦Qa)Ωµ(ψ ◦Qb)

= ω(ψ ◦Q1)ω(ψ ◦Qab)
ω(ψ ◦Qa)ω(ψ ◦Qb)

= (a, b)F

where the last equality is a consequence of [CT13, 4.3]. When R does not contain a
square root of q, we can adjoin this square root to R and work over an extension R′.
The identity then holds in R′, with all scalars being already in R, so it holds in R too. □

4.3. As opposed to the usual Weil factor, the non-normalised Weil factor is not neces-
sarily trivial on split quadratic forms. It is also not invariant under isometries, though it
transforms in a nice way according to c) above. Our preference for the non-normalised
Weil factor comes from the fact that it is more intrinsic than the Weil factor. Indeed,
we only need to be able to define ψ in order to define Ωµ(ψ ◦Q), whereas the usual weil
factor typically requires on top of that the existence of a square root of q. For instance,
if F = F3((t)) and R = Q[ζ3], then i

√
3 ∈ R but i and

√
3 are not in R. We can define

a non-trivial character ψ : F → R× and the scalar ω(ψ ◦ Q) can take the value i, but
we will always have Ωµ(ψ ◦ Q) ∈ R. Moreover, unlike Ωµ(ψ ◦ Q) when R has positive
characteristic, the definition of ω(ψ ◦Q) depends on the choice of a square root of q.

4.4. We now give a product formula for the non-normalised factor when Q is realised
in an orthogonal basis of X. We assume Q is non-degenerate and B = {v1, . . . , vm} is
an orthogonal basis for Q. This choice of basis induces an isomorphism from X to Fm
and we denote it by ϕB. We fix a Haar measure µF of F . We form the Haar measure
⊗µF of Fm and consider its pullback ϕ−1

B · (⊗µF ), which is Haar measure of X. We
set ai = Q(vi). The determinant detB(Q) =

∏
ai does depend on the choice of B,

whereas the Hasse invariant hF (Q) =
∏
i<j(ai, aj)F does not. By combining the points

in Proposition 4.3, we obtain:

Corollary 4.4. We have

Ωϕ−1
B ·(⊗µF )(ψ ◦Q) = ΩdetB(Q),1 × ΩµF (ψ ◦Q1)mhF (Q).

Furthermore, if QIdB is the non-degenerate quadratic form associated to the identity in
the basis B, we have for µ a Haar measure of X that

Ωµ(ψ ◦Q) = ΩdetB(Q),1 × Ωµ(ψ ◦QIdB)hF (Q).

4.5. We give an interpretation of the non-normalised Weil factor as a way to normalise
the Fourier transform with respect to ψ. This normalisation is more natural because
it only requires that the coefficient field contains the values of ψ, as opposed to other
normalisations of the Fourier transform which may require some choices – such as the
choice of a square root of q.

Proposition 4.5. Let ρ ∈ Isosym
F (X,X∗) and let µ be a Haar measure of X.

a) The Haar measure
µρ = Ωµ(ψ ◦Q 1

2ρ
)−1µ

does not depend on the choice of µ.



MODULAR WEIL REP. AND COMPATIBILITY OF CUSPIDALS WITH CONGRUENCES 21

b) If ⋆µρ denotes the convolution product in C∞
c (X) and · the multiplication of

functions, the Fourier transform operator

Fµρ : f ∈ (C∞
c (X), ⋆µρ) 7→

(
x 7→

∫
X
ψ(ρ(x)(u))f(u)dµρ(u)

)
∈ (C∞

c (X),×)

is an isomorphism of algebras.
c) For all f ∈ C∞

c (X), we have

F4
µρf = ε2f and F2

µρf : x 7→ εf(−x)

where ε = Ωm
−1,1

(
− 1,det(Q 1

2ρ
)
)
F

and ε2 =
(

− 1,−1
)m
F

.

Proof. a) Proposition 2.4 b) ensures that µρ does not depend on the choice of µ.
b) We refer to [CT13, Prop 1.2] to show Fµρ is an isomorphism of algebras as the proof
is the same.
c) Let K be a compact open subgroup in X and K⊥ = {x ∈ X | ∀k ∈ K,ψ(ρ(x)(k)) = 1}.
Let 1K be the characteristic function of K. A routine calculation gives

F2
µρ1K = µρ(K)µρ(K⊥) × 1K .

We set ε = µρ(K)µρ(K⊥). By definition

ε = µρ(K)µρ(K⊥) = Ωµ(ψ ◦Q 1
2ρ

)−2 × µ(K)µ(K⊥).

Let K ′ = {x∗ ∈ X∗ | ∀u ∈ X,ψ(x∗(u)) = 1} in X∗, then

µ(K)µ(K⊥) = µ(ρ−1K ′)
µ∗(K ′) = |ρ|µ.

As ω(ψ ◦Q− 1
2ρ

)ω(ψ ◦Q 1
2ρ

) = 1 by [CT13, Prop 3.2], we deduce from Proposition 4.3 f)

Ωµ(ψ ◦Q− 1
2ρ

)Ωµ(ψ ◦Q 1
2ρ

) = |ρ|µ and ε =
Ωµ(ψ ◦Q− 1

2ρ
)

Ωµ(ψ ◦Q 1
2ρ

) .

Because the two quadratic forms Q− 1
2ρ

and Q 1
2ρ

can be put in diagonal form in the
same basis B, Corollary 4.4 yields

ε =
ΩdetB(Q− 1

2 ρ
),1

ΩdetB(Q 1
2 ρ

),1
×
hF (Q− 1

2ρ
)

hF (Q 1
2ρ

) .

On the one hand, we deduce from Proposition 4.3 g) and detB(Q− 1
2ρ

) = (−1)mdetB(Q 1
2ρ

),
the equality

ΩdetB(Q− 1
2 ρ

),1

ΩdetB(Q 1
2 ρ

),1
= Ω(−1)m,1 ×

(
(−1)m,detB(Q 1

2ρ
)
)
F

= (Ω−1,1)m × (−1,−1)
m(m−1)

2
F ×

(
− 1, detB(Q 1

2ρ
)
)m
F
.
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On the other hand, as (−ai,−aj)F = (−1,−aiaj)F × (ai, aj)F , we get

hF (Q− 1
2ρ

) =
(

− 1, (−1)
m(m−1)

2 det(Q 1
2ρ

)m−1)
)
F

× hF (Q 1
2ρ

)

= (−1,−1)
m(m−1)

2
F ×

(
− 1, det(Q 1

2ρ
)
)m−1
F

× hF (Q 1
2ρ

).

This yields the desired equality for ε first, and for ε2 then by Proposition 4.3 g).
Regarding the powers of Fµρ , a classical argument consists in first proving it for

characteristic functions of the form 1x+K and deduce it for all functions in C∞
c (X). □

The previous proposition justifies to make the following definition:

Definition 4.6. We call Fµρ the Fourier transform.

4.6. It is not necessarily possible to normalise the Fourier transform in the usual way
with the sole values of ψ, i.e. such that it satisfies F2f(x) = f(−x). Let F = F3((t))
and R = Q[ζ3]. We have ε = −1 when |ρ|µ = 3. The classical normalisation requires to
divide by

√
3, which does not belong to R. Moreover, when R has positive characteristic,

there is no canonical choice of a square root of q, whereas Fµρ is defined independently
of any choice. This example echoes Section 4.3 in the context of Fourier transforms.

5. The metaplectic cocycle

5.1. We recall some notations from [RR93] and [Kud94]. Let W = X⊕Y be a complete
polarisation and fix a basis {e1, . . . , em} of X. This determines a dual basis {f1, . . . , fm}
in Y i.e. ⟨ei, fj⟩ = δi,j for all i, j. For S ⊆ {1, . . . ,m}, let XS be the subspace of X
generated by (ei)i∈S . If cS denotes the complement of S, then XcS is a complement of
XS in X. We use similar notations for Y . Then WS = XS ⊕ YS is a symplectic subpace
of W with orthogonal complement WcS . Let wS ∈ Sp(W ) be defined by

wS(ei) =
{
fi if i ∈ S
ei if i /∈ S

and wS(fi) =
{

−ei if i ∈ S
fi if i /∈ S

.

For all 0 ≤ j ≤ m, we set wj = w{1,...,j} and Ωj = P (X)wjP (X). The Bruhat decom-
position reads

Sp(W ) =
∐
j

Ωj .

5.2. Let g ∈ Ωj . Let p1 and p2 be in P (X) such that g = p1wjp2. Denote by ϕ1 the
isomorphism between gX ∩X\X and wjX ∩X\X induced by

x ∈ X 7→ p−1
1 x ∈ wjX ∩X\X.

Let Qj be the non-degenerate quadratic form on wjX ∩X\X defined by

Qj(x) = 1
2⟨wjx, x⟩.

For all Haar measures µ on wjX ∩X\X, we denote by µwj = Ωµ(ψ ◦Qj)−1µ the Haar
measure of Proposition 4.5 which normalises the Fourier transform with respect to ψ
and the symmetric isomorphism ρ : x 7→ ⟨wjx,−⟩.
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Lemma 5.1. The Haar measure on gX ∩X\X defined by

µg = Ω1,detX(p1p2) × ϕ1 · µwj
does not depend on the choice of p1 and p2.

Proof. Let g = p1wjp2 = p′
1wjp

′
2 be two decompositions of g ∈ Ωj . Then ϕ−1

1 ◦ ϕ′
1 is an

automorphism of wjX ∩X\X. We need to check that

Ω1,detX(p1p2) × |det(ϕ−1
1 ◦ ϕ′

1)|F = Ω1,detX(p′
1p

′
2).

However, according to [RR93, Lem. 3.4], we have

det(ϕ−1
1 ◦ ϕ′

1)2 = detX(p−1
1 p′

1p
′
2p

−1
2 )

because p−1
1 p′

1wjp
′
2p

−1
2 = wj . We now apply Proposition 4.3 to obtain

Ω1,det(ϕ−1
1 ◦ϕ′

1)2detX(p1p2) = |det(ϕ−1
1 ◦ ϕ′

1)|F × Ω1,detX(p1p2).

Therefore µg does not depend on the choice of p1 and p2. □

5.3. Let g ∈ Ωj . Let p1 and p2 be in P (X) such that g = p1wjp2. We define x(g) as
the image of detX(p1p2) in F×/F×2. Then x(g) is well-defined and does not depend
on the choice of p1 and p2 [RR93, Lem 3.4]. Moreover, we have x(wS) = 1 for all
S ⊆ {1, . . . ,m}. By Proposition 4.3 g), we easily obtain:

Corollary 5.2. For all g ∈ Sp(W ) and all p ∈ P (X), we have

µgp = (x(p), x(g))F × Ω1,detX(p) × µg

and
µpg = (x(p), x(g))F × Ω1,detX(p) × ϕp · µg

where ϕp : x ∈ gX ∩X\X 7→ px ∈ pgX ∩X\X.

5.4. Recall that pSX : S̃p
R

ψ,SX
(W ) → Sp(W ) is the canonical projection associated to the

Schrödinger model Sψ,X and that the intertwining operators IA1,A2,µ,ω are the change of
models. We define a section of pSX thanks to the previous measures via

σ : g ∈ Sp(W ) 7→ σ(g) = IgX,X,µg ,0 ◦ Ig ∈ S̃p
R

ψ,SX
(W ).

We denote by ĉ the 2-cocyle associated to this section i.e.

ĉ : (g, g′) ∈ Sp(W ) × Sp(W ) 7→ σ(g)σ(g′)σ(gg′)−1 ∈ R×.

Lemma 5.3.
a) For all g ∈ Sp(W ) and all p ∈ P (X)

ĉ(g, p) = ĉ(p, g) = ĉ(p−1, g) = (x(p), x(g))F .

b) For S and S′ in {1, . . . ,m}, we set l = |S ∩ S′|. Then

ĉ(wS , wS′) = (−1,−1)
l(l+1)

2
F .



24 JUSTIN TRIAS

c) Let S ⊆ {1, . . . ,m} and W = WS +WcS, so that the subgroup of Sp(W )
GS = {g ∈ Sp(W ) | g(WS) ⊂ WS and g|WS

= IdWS
}

is canonically isomorphic to Sp(WcS) via the restriction to WcS. We use similar
notations for cS. Then for all g ∈ GS and all g′ ∈ GcS, we have

ĉ(g, g′) = ĉ(g′, g) = (x(g), x(g′))F .

Proof. a) As σ(p) = Ω1,detX(p) × Ip, we deduce from Corollary 5.2 that
σ(pg) = (x(p), x(g))F × σ(g)σ(p) and σ(pg) = (x(p), x(g))F × σ(p)σ(g).

Therefore ĉ(p, g) = ĉ(g, p) = (x(p), x(g))F . Moreover x(p) = x(p−1) by definition.
b) Denote by γS the isomorphism XS ≃ YS induced by wS . For f ∈ C∞

c (Y ), we have

σ(wS)f : y 7→
∫
wSX∩X\X

ψ(⟨a, y⟩)f((−γSa, 0))dµwS (a).

Set ρS : x ∈ XS 7→ ⟨γSx,−⟩ ∈ X∗
S which is symmetric. We define

MγS : f ∈ C∞
c (YS) 7→ FµρS

(f ◦ (−γS)) ◦ (−γS)−1 ∈ C∞
c (YS)

where FµρS
is the Fourier transform in Proposition 4.5 i.e. for f ′ ∈ C∞

c (XS) and x ∈ XS

FµρS
f ′(x) =

∫
XS

ψ(⟨γSx, a⟩)f ′(a)dµwS (a).

Through the decomposition C∞
c (Y ) = C∞

c (YS) ⊗ C∞
c (YcS), we get σ(wS) = MγS ⊗ Id.

The same holds for wS′ and σ(wS′) of course.
Now, via the decomposition C∞

c (Y ) = C∞
c (YS∩S′) ⊗ C∞

c (YS∆S′) ⊗ C∞
c (Yc(S∪S′)), the

operator σ(wS) ◦ σ(wS′) can be written as (MγS ◦ MγS′ ) ⊗ MγS∆S′ ⊗ Id where γS∆S′ is
associated to wS∆S′ . However, the restriction of MγS and MγS′ to C∞

c (YS∩S′) are both
equal to MγS∩S′ . Furthemore

M2
γS∩S′f = FµρS∩S′ (MγS∩S′f ◦ (−γS∩S′)) ◦ (−γS∩S′)−1

= FµρS∩S′

(
FµρS∩S′ (f ◦ (−γS∩S′))

)
◦ (−γS∩S′)−1

= F2
µρS∩S′

(f ◦ (−γS∩S′)) ◦ (−γS∩S′)−1.

We finally obtain thanks to Proposition 4.5 that for all f ∈ C∞
c (YS∩S′) and all y ∈ YS∩S′

M2
γS∩S′f(y) = (−1, det(Q 1

2ρS∩S′ ))F (Ω−1,1)l × f(−y).

Since wSwS′ = wS∆S′aS∩S′ where aS∩S′ = (−IdWS∩S′ ) ⊕ IdWc(S∩S′) is in P (X), the
measure µwSwS′ = Ω1,(−1)l × µwS∩S′ . In the previous decomposition, σ(wSwS′) can be
written as AS∩S′ ⊗MγS∆S′ ⊗ Id where AS∩S′f(y) = Ω1,(−1)l ×f(−y). Therefore, because

(−1,det(Q 1
2ρS∩S′ ))F = (−1, 2−l)F = (−1, 2l)F = (−1, 2)lF = 1,

we obtain
ĉ(wS , wS′) = Ωl

−1,1 × Ω(−1)l,1.

By applying Proposition 4.3 g) repeatedly, we get

Ω(−1)l,1 = (Ω−1,1)l × (−1,−1)
l(l−1)

2
F .



MODULAR WEIL REP. AND COMPATIBILITY OF CUSPIDALS WITH CONGRUENCES 25

Finally, because (Ω−1,1)2 = (−1,−1)F , we conclude that ĉ(wS , wS′) = (−1,−1)
l(l+1)

2
F .

c) On the one hand, for all f ∈ SX , an explicit computation of σ(g) ◦σ(g′)f((0, 0)) gives∫
gX∩X\X

∫
g′X∩X\X

f(((g′)−1a′, 0)((g′)−1g−1a, 0))dµg′(a′)dµg(a).

On the other hand, the morphism
x ∈ X 7→ (pg(x), pg′(x)) ∈ (g′X ∩X\X) × (gX ∩X\X)

has kernel gg′X ∩ X. However, g and g′ commute and each one of them induces the
identity map by passing to the respective quotients g′X ∩X\X and gX ∩X\X. We use
Proposition 4.3 g) again to obtain

µg ⊗ µg′ = (x(g), x(g′))Fµgg′ .

By a change of variables, we get
σ(g) ◦ σ(g′)f((0, 0)) = (x(g), x(g′))F × σ(gg′)f((0, 0))

for all f ∈ SX . Therefore σ(g) ◦ σ(g′) = (x(g), x(g′))F × σ(gg′). □

Definition 5.4. We let Sp(W ) ×ĉ R
× be the set Sp(W ) ×R× with group law

(g, λ) · (g′, λ′) = (gg′, ĉ(g, g′)λλ′).

Theorem 5.5. We follow the same case distinctions as Theorem 3.1.
a) If F is finite, or if the characteristic ℓ of R is 2, then ĉ is the trivial 2-cocyle.

In particular σ is a section of pSX that is a group morphism. Furthermore,
such a group morphism is unique, except in the exceptional case F = F3 and
dimFW = 2. The group morphism σ always defines an isomorphism of central
extensions

(g, λ) ∈ Sp(W ) ×R× 7→ (g, λσ(g)) ∈ S̃p
R

ψ,SX
(W ).

b) If F is local non-archimedean and ℓ ̸= 2, then ĉ takes value in {±1}. In particular
σ is the unique section of pS realising an isomorphism of central extensions

(g, λ) ∈ Sp(W ) ×ĉ R
× 7→ (g, λσ(g)) ∈ S̃p

R

ψ,SX
(W ).

Its restriction to Sp(W ) ×ĉ {±1} induces an isomorphism with Ŝp
R

ψ,SX
(W ).

Proof. We treat both points at the same time. Let p1, p2, p ∈ P (X) and g1, g2 ∈ Sp(W ).
By decomposing σ(g1p

−1) ◦ σ(pg2), we deduce from Lemma 5.3 that
ĉ(g1p

−1, pg2) = ĉ(g1, p)ĉ(p, g2)ĉ(p, p)ĉ(g1, g2),
and by decomposing σ(p1g1) ◦ σ(g2p2) as well, we obtain

ĉ(p1g1, g2p2) = ĉ(p1, g1)ĉ(g2, p2)ĉ(g1, g2)ĉ(p1, g1g2)ĉ(p1g1g2, p2).
Therefore by Lemma 5.3 a), we get

ĉ(p1g1p
−1, pg2p2)ĉ(g1, g2)−1 =

{
1 in case a);

±1 in case b).
There remains to prove that, for g1 and g2 well-chosen, the 2-cocycle ĉ(g1, g2) is either

trivial or has values in {±1}. To do so, we use a decomposition associated to the
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Leray invariant [RR93, Th 2.16]. For all g1 and g2 in Sp(W ), there exist S1, S2 and
S in {1, . . . ,m}, and an antisymmetric isomorphism ρ : YS → XS , i.e. ρ∗ = −ρ, such
that (S1 ∪ S2) ∩ S = ∅ and g1 = p1wS∪S1uρp

−1 and g2 = pwS∪S2p2. We simply need
to compute ĉ(wS∪S1uρ, wS∪S2) for the previous morphism ρ. However, by computing
σ(wS∪S1uρ) ◦ σ(wS∪S2) in different ways, we obtain by Lemma 5.3 that

ĉ(wS∪S1uρ, wS∪S2) = ĉ(wSuρ, wS)ĉ(wS1wS2 , wSuρwS)ĉ(wS1 , wS2)

= ĉ(wSuρ, wS) ((−1)l, x(wSuρwS))F (−1,−1)
l(l+1)

2
F .

where l = |S1 ∩ S2|.
There only remains to study ĉ(wSuρ, wS) to finish the proof:

Lemma 5.6. We have
ĉ(wSuρ, wS) = (−2, det(QγSργS ))F × hF (QγSργS )

where QγSργS (x) = ⟨x, γSργSx⟩ is a non-degenerate quadratic form over XS.

Proof. For all S ⊆ {1, . . . ,m} and all ρ : YS → XS such that uρ ∈ Sp(W ), we want
to compute the composition σ(wSuρ) ◦ σ(wS) in terms of σ(wSuρwS). Let f ∈ SX . As
σ(wSuρ) = σ(wS) ◦ σ(uρ) thanks to Lemma 5.3, we have

σ(wSuρ) ◦ σ(wS)f((0, 0)) =
∫
XS

(σ(uρ) ◦ σ(wS)f)((w−1
S a, 0))dµwS (a).

However (σ(uρ) ◦ σ(wS)f)((w−1
S a, 0)) = ψ(1

2⟨w−1
S a, (−ρ)w−1

S a⟩) × (σ(wS)f)((w−1
S a, 0))

by the formulas of the Schrödinger model. Moreover

σ(wS)f((w−1
S a, 0)) =

∫
XS

f((w−1
S a′, 0)(w−2

S a, 0)dµwS (a′)

=
∫
XS

ψ(⟨a′, w−1
S a⟩)f((w−1

S a′, 0)))dµwS (a′)

= |ϕρ,S |−1
∫
XS

ψ(⟨w−1
S a, ρw−1

S a′′⟩)f((−w−1
S ρw−1

S a′′, 0)dµwS (a′′)

by the change of variables a′ = ϕρ,S(a′′) = −ρw−1
S a′′ for the automorphism ϕρ,S of XS

induced by −ρw−1
S over XS .

Since u−1
ρ = u−ρ, we get

−w−1
S ρw−1

S a′′ = w−1
S u−1

ρ w−1
S a′′ − w−2

S a′′.

Therefore

f((−w−1
S ρw−1

S a′′, 0)) = ψ(1
2⟨w−1

S a′′, (−ρ)w−1
S a′′⟩)f((w−1

S u−1
ρ w−1

S a′′, 0)).

This leads to σ(wSuρ) ◦ σ(wS)f((0, 0)) up to a factor |ϕρ,S |−1 i.e.∫
XS

∫
XS

ψ

(1
2⟨w−1

S (a− a′′), (−ρ)w−1
S (a− a′′)⟩

)
(IwSuρwSf)((a′′, 0))dµwS (a′′)dµwS (a).

Thanks to the non-normalised Weil factor, we can simplify the latter as

ΩµwS
(ψ ◦QS) ×

∫
XS

(IwSuρwSf)((a′′, 0))dµwS (a′′)
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where QS(x) = −1
2⟨x,wSρw−1

S x⟩.
Furthermore wSuρwS ∈ GcS can be decomposed in WS = XS + YS as

wSuρwS =
[

∗ ∗
γSργS ∗

]
where wS =

[
∗ ∗
γS ∗

]
and γ∗

S = −γS .

Since γSργS has rank |S|, there exist p1 and p2 in P (XS) such that wSuρwS = p1wSp2.
In addition, there exists a decomposition of the form

wSuρwS =
[

IdXS ∗
0 IdYS

]
wS

[
a ∗
0 (a∗)−1

]
.

In particular, such a decomposition imposes γSa = γSργS i.e. a = ργS ∈ GLF (XS).
With these notations, we have ϕρ,S = ργS and QS(x) = 1

2⟨x, γSργSx⟩.
The expression of the measure µwSuρwS then becomes

µwSuρwS = Ω1,det(ργS) × µwS .

This leads to the formula

ĉ(wSuρ, wS) = |ϕρ,S |−1 × ΩµwS
(ψ ◦QS) × Ωdet(ργS),1.

We are going to simplify it in what follows.
On the one hand, in the standard basis B of XS , Corollary 4.4 gives

ΩµwS
(ψ ◦Q 1

2γSργS
) = ΩdetB(Q 1

2 γSργS
),1 × hF (Q 1

2γSργS
) × ΩµwS

(ψ ◦QγS ).

But ΩµwS
(ψ ◦ QγS ) = (Ω1, 1

2
)|S| × ΩµwS

(ψ ◦ Q 1
2γS

) = (Ω1, 1
2
)|S|, where the last equality

can be deduced form the definition of µwS . Furthermore

hF (Q 1
2γSργS

) = (2, det(QγSργS )|S|−1)F × hF (QγSργS ).

and
ΩdetB(Q 1

2 γSργS
),1 = (2−|S|,det(QγSργS ))F × Ω2−|S|,1 × ΩdetB(QγSργS ),1

By noticing that Ω2−|S|,1 = (Ω 1
2 ,1

)|S|, we get

ΩµwS
(ψ ◦Q 1

2γSργS
) = (2, det(QγSργS ))F × ΩdetB(QγSργS ),1hF (QγSργS ).

On the other hand, the matrix representation of the quadratic form QγSργS in the basis
B is QγSργS (x) = tXMX where M = MatB(ργS) and X ∈ F |S| is the coordinate vector
associated to x ∈ X in the basis B. This means detB(QγSργS ) = det(ργS). Because for
all a ∈ F×, we have (Ωa,1)2 = |a| × (a, a)F = |a| × (−1, a)F , we obtain

ĉ(wSuρ, wS) = (−2,det(QγSργS ))F × hF (QγSργS ).

□

To finish the proof of a), the uniqueness outside the exceptional case is a consequence
of Theorem 3.1, whereas the uniqueness in b) is a classical fact about isomorphisms
of central extensions, which are parametrised by characters of Sp(W ) in our situation.
Since the symplectic group is perfect, there is only one such isomorphism. □
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Remark 5.7. The formula we obtained in the proof for ĉ(wSuρ, wS) is slightly different
from [RR93], but the two 2-cocyles are cohomologous. Indeed, these cocycles correspond
to different choices of Haar measures, namely

µg,Rao = Ω 1
2 ,

1
2 detX(p1p2) × ϕ1 · µwj = (2, x(g))F × µg

i.e. σRao(g) = (2, x(g))F × σ(g). More generally, if µg,α = Ωα,αdetX(p1p2) × ϕ1 · µwj for
α ∈ F×, this gives a 2-cocycle ĉα in the same cohomology class as ĉ.

5.5. By writing σ(p1g1)σ(g2p2) in different ways, we obtain

ĉ(p1g1, g2p2) = ĉ(p1, g1)ĉ(g2, p2)ĉ(g1g2, p2)ĉ(p1, g1g2p2)ĉ(g1, g2)

and likewise for σ(g1p)σ(p−1g2) to obtain

ĉ(g1p
−1, pg2) = ĉ(g1, p)ĉ(p, g2)ĉ(p, pg2)ĉ(g1, g2).

Combining these facts with Lemma 5.3 and Lemma 5.6, we deduce the general formula:

Corollary 5.8. Let g1 and g2 be in Sp(W ). By definition of the Leray invariant, there
exist p1, p2, p ∈ P (X), S ⊆ {1, . . . ,m}, an antisymmetric isomorphism ρ : YS → XS and
S1, S2 ⊂ cS such that g1 = p1wS∪S1uρp

−1 and g2 = pwS∪S2p2. With these notations,
and by setting l = |S1 ∩ S2|, we have

ĉ(g1, g2) = (x(g1), x(g2))F × (x(g1)x(g2),−x(g1g2))F × (−1,−1)
l(l+1)

2
F

× ((−1)l, x(wSuρwS))F × ĉ(wSuρ, wS).

6. Around a modular theta correspondence

6.1. Let (H1, H2) be a reductive dual pair in Sp(W ). Recall that H1 and H2 are two
reductive subgroups of Sp(W ) that are mutual centralisers. See [MVW87, Chap I, 1.17]
for more details about dual pairs and their classification.

Let pS : S̃p
R

ψ,S(W ) → Sp(W ) be the projection associated to a model S of the Weil
representation. We set

H̃1,S = p−1
S (H1) and H̃2,S = p−1

S (H2).

Proposition 6.1. The groups H̃1,S and H̃2,S are mutual centralisers in S̃p
R

ψ,S(W ).

Proof. First of all, Lemma 2.7 ensures the centraliser of H̃1,S contains H̃2,S . If g̃ is in
the centraliser of H̃1,S , then pS(g̃) is in the centraliser of H1 i.e. pS(g̃) ∈ H2. Hence the
centraliser of H̃1,S is H̃2,S . Similarly H̃1,S is the centraliser of H̃2,S . □

We then say (H̃1,S , H̃2,S) forms a reductive dual pair in S̃p
R

ψ,S(W ). We still denote by
ωψ,S the pullback of the Weil representation via the morphism given by multiplication

H̃1,S × H̃2,S → S̃p
R

ψ,S(W ).
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6.2. We want to consider only a certain kind of smooth representations of these central
extensions of H1 and H2, namely the genuine representations, as ωψ,S itself is genuine.
Let H be a closed subgroup H of Sp(W ). The category of genuine representations is

Repgen
R (H̃S) = {(π, V ) ∈ RepR(H̃S) | ∀λ ∈ R×, π((IdW , λIdS)) = λIdV }.

Let Irrgen
R (H̃1,S) be the isomorphism classes of irreducible genuine representations. Note

that the contragredient of a genuine representation is not genuine. However, there are
two ways to solve this issue, as Proposition 3.12 illustrates. We can twist by a character
to make the naive contragredient genuine, which requires carrying cumbersome notations
due to this twist. As an alternative, we can work in the category Repgen

R (ĤS) for the two-
fold cover of H as the contragredient now remains genuine. In addition, the categories
Repgen

R (ĤS) and Repgen
R (H̃S) are equivalent. We prefer this second more elegant solution.

6.3. Let π1 ∈ Repgen
R (Ĥ1) be irreducible. For V ∈ Repgen

R (Ĥ1 × Ĥ2), the largest π1-
isotypic quotient Vπ1 of π1 is the largest quotient on V on which the action of Ĥ1 is
π1-isotypic. An alternative definition is that it is the unique quotient of V which factors
all maps V → π1. Moreover, it is endowed with an action of Ĥ2.

We now assume R is an algebraically closed field. From [Tri26], we obtain:

Theorem 6.2. Let π1 ∈ Irrgen
R (Ĥ1,S). There exists Θ(π1) ∈ Repgen

R (Ĥ2,S), unique up to
isomorphism, such that (ωψ,S)π1 ≃ π1 ⊗R Θ(π1).

6.4. We discuss some statements on Θ(π1) at the heart of the local theta correspondence.
We now suppose F is local non-archimedean. Let π1 ∈ Irrgen

R (Ĥ1,S). We consider the
following first statement:

(Fin) Θ(π1) has finite length.
If (Fin) holds, the maximal semisimple quotient θ(π1) of Θ(π1), also called the cosocle,
is well-defined. We add the second statement

(Irr) θ(π1) is irreducible or zero.
We also add when (Fin) and (Irr) hold for all π1, the third statement
(Uni) 0 ̸= θ(π1) ≃ θ(π′

1) if and only if π1 ≃ π′
1

6.5. When (Fin)-(Irr)-(Uni) hold, together with the three reverse statements obtained
by exchanging the roles of H1 and H2, we say that the R-modular local theta corres-
pondence holds or is valid. In this case, the symbol θ is used in both ways and defines
a bijection between subsets of representations that are contributing i.e.

{π1 ∈ Irrgen
R (Ĥ1,S) | Θ(π1) ̸= 0} θ≃ {π2 ∈ Irrgen

R (Ĥ2,S) | Θ(π2) ̸= 0}
where θ(π1) = π2 if and only if ωψ,S ↠ π1 ⊗R π2.

6.6. If (H1, H2) is a dual pair of type II, i.e. if H1 and H2 are general linear groups
over a division algebra, then the R-modular theta correspondence holds as long as the
characteristic ℓ of R does not divide the pro-orders of H1 and H2, thanks to the thesis
work [Mín06]. When ℓ divides the pro-order of H1 or H2, the statement (Irr) does not
hold as one can exhibit some π1 by [Mín06, Sec. 4.5.2] such that Θ(π1) is semisimple of
length 2. If (H1, H2) is a dual pair of type I, i.e. if H1 and H2 are isometry groups, we
refer to [Tri25, Th A] for the R-modular theta correspondence for non-quaternionic dual
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pairs if ℓ is large enough compared to H1 and H2, but the bound on ℓ is not explicit,
and to [Tri25, Th B] for a counter-example to (Irr) when ℓ is not large.

7. Supercuspidal blocks in banal characteristic

7.1. Let G be a reductive group over F with compact centre. Let ℓ be a prime number
which does not divide the pro-order of G. We write ℓ ∤ |G|. Let rℓ : Zℓ → Fℓ.

Let µ be a Haar measure of G with values in Qℓ. We assume µ is normalised on
some open pro-p-subgroup, so that the volume of any open pro-p-subgroups subgroup
belongs to pZ. In particular µ is also a measure with values in Zℓ. Let rℓ(µ) be the Haar
measure with values in Fℓ obtained from µ. The Hecke algebras HQℓ(G) and HZℓ(G)
are associated to the measure µ, whereas HFℓ(G) is associated to rℓ(µ). This choice of
measures makes the convolution products compatible i.e. we have morphisms of algebras

HZℓ(G) ↪→ HQℓ(G) and HZℓ(G) ↠ HFℓ(G).

We use the generic notation HR(G) for these algebras where R is one of Qℓ, Zℓ or Fℓ.

7.2. The centre zR(G) of the category RepR(G), called the Bernstein centre, is by
definition the ring of endomorphisms of the identity functor. This ring is commutative
and we can see z ∈ zR(G) as a collection (zV )V ∈RepR(G) of G-equivariant endomorphisms
such that for all f ∈ HomR[G](V,W ), we have zW ◦ f = f ◦ zV . The natural action of zR
on the regular representation C∞

c (G) is faithful i.e. z = (zV )V 7→ zC∞
c (G,R) is injective.

We can even upgrade the latter into a bijection zR(G) ≃ EndR[G×G](C∞
c (G,R)).

We define the functor of scalar extension to Qℓ as

− ⊗Zℓ Qℓ : V ∈ RepZℓ(G) 7→ V ⊗Zℓ Qℓ ∈ RepZℓ(G)

We also define the reduction modulo ℓ functor for representations with coefficients in Zℓ
thanks to rℓ : Zℓ → Fℓ and we still denote it by

rℓ : V ∈ RepZℓ(G) 7→ V/ℓV = V ⊗Zℓ Fℓ ∈ RepFℓ(G).

Remark 7.1. This functor is not to be confused with the usual reduction modulo ℓ
map, commonly denoted by rℓ in the literature [Vig96, II.5.11.b], [DHKM24, Sec 4.2].

Note that we have natural morphisms between centres

zZℓ(G) ↪→ zQℓ(G) and zZℓ(G) → zFℓ(G),

induced by the previous two functors. These morphisms can be easily understood via
the regular representation. Indeed, let φ be a (G × G)-equivariant endomorphism of
C∞
c (G,Zℓ). Because C∞

c (G,Qℓ)⊗ZℓQℓ
∼= C∞

c (G,Qℓ) and φ⊗ZℓQℓ is (G×G)-equivariant,
this gives the first ring morphism. It is injective because φ 7→ φ ⊗Zℓ Qℓ is injective.
Similarly C∞

c (G,Qℓ) ⊗Zℓ Fℓ
∼= C∞

c (G,Fℓ) induces the second ring morphism. However,
there is a priori no formal reason that would guarantee it is surjective.
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7.3. Let S be a subset of IrrR(G) and cS be its complement. Denote by RepSR(G) the
full subcategory of RepR(G) whose objects have all their irreducible subquotients in S.
We say a subset S of IrrR(G) decomposes RepR(G) if there is a product of categories

RepR(G) = RepSR(G) × RepcSR (G).
In this situation, there exists a (unique) central idempotent eS ∈ zR(G) which gives the
previous decomposition i.e. such that

eSRepR(G) = RepSR(G) and (1 − eS)RepR(G) = RepcSR (G).
Conversely, any central idempotent e of the Bernstein centre induces a decomposition of
the category RepR(G). By definition, such a decomposition induces a partition in two
sets of IrrR(G). We say a central idempotent e is primitive if the category eRepR(G)
is indecomposable. This is equivalent to saying that e can’t be written as a sum of two
non-zero central idempotents. We say a non-empty subset S of IrrR(G) defines a block
in RepR(G) if S decomposes RepR(G) and there is no non-empty proper subsets of S
decomposing RepR(G). Finally, the associated central idempotent eS is primitive if and
only if S defines a block.

7.4. Let Π ∈ RepQℓ(G) be an irreducible cuspidal representation. Since the centre of G
is compact and ℓ ∤ |G|, it is a projective and injective object in the category RepQℓ(G).
This implies that {Π} decomposes RepQℓ(G). By Schur’s lemma and Morita equivalence

Rep{Π}
Qℓ

(G) ≃ Qℓ − mod

i.e. all representations are Π-isotypic and only the multiplicity of Π matters. We denote
by eΠ the associated primitive central idempotent.

7.5. The representation Π is integral [DHKM24, II.4.12] i.e. Π contains a free Zℓ-
lattice L which is stable under the action of G. According to [DHKM24, Prop 4.15], for
any stable Zℓ-lattice L in Π, the representation π = rℓ(L) is irreducible and cuspidal.
The isomorphism class of π does not depend on the choice of L as a consequence of
the Brauer-Nesbitt principle. In particular, if we consider Π as a representation with
coefficients in Zℓ, this means all its irreducible subquotients are isomorphic to π. Once
again, as the centre of G is compact and ℓ ∤ |G|, the representation π is a projective and
injective object in RepFℓ(G) and the singleton {π} decomposes RepFℓ(G). We let eπ be
the associated primitive central idempotent.

7.6. We want to show L defines a block in RepZℓ(G). We will use a compatibility for
the formal degrees of Π and π to show it is projective, which gives an alternative proof
of [DHKM24, Prop 4.17].

Let R be Qℓ or Fℓ. Let V ∈ RepR(G) be an irreducible compact representation i.e.
V ⊗R V

∨ ↪→ C∞
c (G,R)

v ⊗R v
∨ 7→ g 7→ v∨(g · v) .

In particular Π and π are compact representations. Let µ be a Haar measure with
values in R. This endows C∞

c (G,R) with a structure of algebra via convolution and
we have a natural map C∞

c (G,R) → EndR(V ) given by the action on V . The latter
map depends on µ. We say V has a formal degree if there exists a Haar measure µV
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such that the composition V ⊗R V
∨ → C∞

c (G,R) → EndR(V ) is the canonical map
v ⊗R v

∨ 7→ (s 7→ v∨(s) v). If the formal degree exists, it is of course unique.
All projective representations have a formal degree. We now show a compatibility

between the formal degrees µΠ and µπ.

Lemma 7.2. The formal degree of Π comes from a Haar measure with values in Zℓ and
reduces modulo ℓ to the formal degree of π. In particular L ∈ RepZℓ(G) is projective.

Proof. Let B = (vi)i∈I be a basis of L over Zℓ. We denote by (v∨
i )i∈I the dual basis of B

in Π∨. Then the Zℓ-lattice L∨ generated by this dual basis is a stable Zℓ-lattice in Π∨.
By choosing a Haar measure µ with values in Zℓ, the coefficients of L acts via

L⊗Zℓ L
∨ → C∞

c (G,Zℓ) → EndZℓ(L)

where only the last morphism depends on µ.
Moreover the functors −⊗ZℓQℓ and rℓ induce π⊗Fℓ π

∨ → C∞
c (G,Fℓ) → EndFℓ(π) and

Π ⊗Qℓ Π∨ → C∞
c (G,Qℓ) → EndQℓ(Π). By existence of the formal degree, these maps

are scalar multiples of the canonical map. Let aΠ ∈ Qℓ and aπ ∈ Fℓ be those scalars.
We easily see that aΠ ̸= 0, otherwise µ must be zero. Moreover, if we assume that

rℓ(µ) ̸= 0, then we see that aπ ̸= 0 and aΠ ∈ Zℓ and rℓ(aΠ) = aπ. As a result aΠ ∈ Zℓ
×.

Therefore the measure a−1
Π µ can be identified with µΠ and rℓ(µΠ) = µπ.

As L is admissible, the image of C∞
c (G,Zℓ) → EndZℓ(L) lies in Endfin

Zℓ
(L) where

f ∈ Endfin
Zℓ

(L) if there exists L′ ⊂ L of finite rank such that L = L′ ⊕ L′′ and f

factors through an endomorphism in EndZℓ(L
′). Furthermore Endfin

Zℓ
(L) ≃ L ⊗Zℓ L

∨ in
RepZℓ(G×G). Therefore L⊗Zℓ L

∨ ↪→ C∞
c (G,Zℓ) admits a retract i.e.

C∞
c (G,Zℓ) ≃ (L⊗Zℓ L

∨) ⊕ V ′.

But C∞
c (G,Zℓ) is projective by [Tri25, Lem 1.4], so L is projective as well. □

Proposition 7.3. The idempotent eΠ belongs to zZℓ(G) and rℓ(eΠ) = eπ.

Proof. From the previous decomposition

C∞
c (G,Zℓ) ≃ (L⊗Zℓ L

∨) ⊕ V ′,

gives by scalar extension to Qℓ the decomposition

C∞
c (G,Qℓ) = eΠC

∞
c (G,Qℓ) ⊕ (1 − eΠ)C∞

c (G,Qℓ)

because eΠC
∞
c (G,Qℓ) ≃ Π⊗Qℓ Π∨. In particular HomZℓ[G](L, V

′) = 0, so no subquotient
of V ′ can be isomorphic to π, otherwise HomZℓ[G](L, V

′) ̸= 0 as L is projective. Therefore
there exists e ∈ zZℓ(G) such that eC∞

c (G,Zℓ) ≃ L ⊗Zℓ L
∨ and e = eΠ in zQℓ(G). We

have rℓ(eΠ) = eπ because π is the only irreducible subqutotient of L. □

Then eΠRepZℓ(G) = Rep{π}
Zℓ

(G) is clearly a block and we also have rℓ(eΠV ) = eπrℓ(V )
for all V ∈ RepZℓ(G).
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8. Congruences of supercuspidal theta lifts in banal characteristic

Let (H1, H2) be a dual pair of type I in Sp(W ) over a non-archimedean local field F .
Let ψ be a non-trivial character of F with values in Zℓ. In particular we can consider
ψ as being valued in Qℓ, and its reduction modulo ℓ defines a non-trivial character with
values in Fℓ, still denoted ψ. We allow this abuse of notations as the context should be
clear. Let R be any of Qℓ, Zℓ or Fℓ.

8.1. Let X be a Lagrangian in W . Let V R
X be the Schrödinger model of the Heisenberg

representation with coefficients in R associated to ψ and X. When R = Zℓ, we simply
recall from [Tri23] that is the subspace of functions valued in Zℓ. We have equivariant
morphisms for the action of the Heisenberg group

V Zℓ
X ↪→ V Qℓ

X and V Zℓ
X ↠ V Fℓ

X .

The model of the Weil representation over R associated to ψ and X is
(ωψ,V R

X
, V R

X ) ∈ RepR(Ŝp(W )),

where Ŝp(W ) is the metaplectic group. The previous morphisms are equivariant i.e.
ω
ψ,V

Zℓ
X

↪→ ω
ψ,V

Qℓ
X

and ω
ψ,V

Zℓ
X

↠ ω
ψ,V

Fℓ
X

.

We denote by Ĥ1 and Ĥ2 the inverse images of H1 and H2 in Ŝp(W ). Therefore

ωψ,V R
X

∈ RepR(Ĥ1 × Ĥ2).

8.2. We now suppose that ℓ does not divide the pro-order of Ĥ1. We also assume that
Ĥ1 is split over H1 i.e. Ĥ1 ≃ H1 × {±1}. Then we have the following equivalence
of categories Repgen

R (Ĥ1) ≃ RepR(H1). These categories share the same properties in
the sense that a representation in RepR(Ĥ1) is projective, resp. injective or cuspidal or
integral, if and only its image in RepR(H1) is. We suppose Ĥ2 is split as well.

Let Π1 ∈ RepQℓ(H1) be irreducible and cuspidal. Let π1 ∈ RepFℓ(H1) be the irredu-
cible cuspidal representation appearing in Section 7.5. A famous result in the complex
setting [MVW87, Chap. 3, IV.4 Th. 1) a)] ensures that Θ(Π1) is irreducible when it is
non-zero. This result is also valid over Qℓ as Qℓ ≃ C. If Θ(Π1) is integral, it admits a
stable Fℓ-lattice L and the Brauer-Nesbitt principle then guarantees the semisimplifica-
tion rℓ(Π1) of rℓ(L) has finite length and is independent of the choice of L.

Proposition 8.1. We recall that ℓ does not divide the pro-order of Ĥ1 and we assume Ĥ1
and Ĥ2 are split. Then the representation Θ(Π1) is integral and the semisimplification
of Θ(π1) is rℓ(Θ(Π1)). In particular Θ(π1) has finite length.

Proof. Because the category Rep{Π1}
Qℓ

(H1) is semisimple(
ω
ψ,V

Qℓ
X

)
Π1

≃ eΠ1ω
ψ,V

Qℓ
X

≃ Π1 ⊗Qℓ Θ(Π1) in RepQℓ(H1 ×H2).

We consider eΠ1ω
ψ,V

Zℓ
X

⊆ eΠ1ω
ψ,V

Qℓ
X

in RepZℓ(H1 ×H2). In addition

rℓ(eΠ1ω
ψ,V

Zℓ
X

) = eπ1rℓ(ω
ψ,V

Qℓ
X

) = eπ1ω
ψ,V

Fℓ
X

≃ π1 ⊗Fℓ Θ(π1).
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To finish the proof, we need to show that eΠ1ω
ψ,V

Zℓ
X

∈ RepZℓ(H1 × H2) is a stable

Zℓ-lattice in the irreducible representation
eΠ1ω

ψ,V
Qℓ
X

≃ Π1 ⊗Qℓ Θ(Π1) ∈ RepQℓ(H1 ×H2).

However, we have to replace Zℓ by a finite extension of Zℓ in our argument. First of
all, by a forthcoming work [Tri26], there exists a finite extension E of Qℓ and ω ∈
RepOE

(H1 × H2) such that ω ⊗OE
R ≃ ωψ,V R

X
. Moreover, up to enlarging E again, we

can assume Π1 and π1 are realised over E and kE . By abuse of notations, we still denote
these representations by Π1 and π1. We also write eΠ1 ∈ zOE

(G) and eπ1 ∈ zkE (G).
The representation ω does not contain any E-lines. As ω = eΠ1ω ⊕ (1 − eΠ1)ω, then

eΠ1ω does not contain an E-line. Furthermore eΠ1ω ⊆ eΠ1(ω ⊗OE
E) ≃ Π1 ⊗E Θ(Π1)

where the latter is an irreducible admissible representation (assuming Θ(Π1) ̸= 0). Since
OE is local principal complete and dimE(Π1 ⊗E Θ(Π1)) is countable, we deduce that
eΠ1ω is a stable OE-lattice by [Vig96, I.9.2]. Therefore eΠ1ω⊗OE

Zℓ is a stable Zℓ-lattice.
In particular Θ(Π1) is integral.

By [Vig96, II.5.11] rℓ(eΠ1ω
ψ,V

Zℓ
X

) = π1 ⊗Fℓ Θ(π1) has finite length, so does Θ(π1). □

We can improve the previous result in the so-called banal case i.e. when ℓ does not
divide any of the pro-orders of H1 and H2. The condition Θ(Π1) is irreducible cuspidal
recovers the famous case of the first occurrence index.

Theorem 8.2. Assume ℓ does not divide the pro-orders of H1 and H2, and assume Ĥ1
and Ĥ2 are split. Suppose Θ(Π1) is an irreducible cuspidal representation. Then Θ(π1)
is an irreducible cuspidal representation.

Proof. By [DHKM24, Prop 4.15], the representation rℓ(Θ(Π1)) is irreducible and cuspidal.
It is also the semisimplified of Θ(π1), so Θ(π1) is irreducible and cuspidal. □

Remark 8.3. Though it is probably a hard question, it would be nice to have a more
precise description of the stable Zℓ-lattice

eΠ1ω
ψ,V

Zℓ
X

⊆ eΠ1ω
ψ,V

Qℓ
X

≃ Π1 ⊗Qℓ Θ(Π1)

to describe Θ(π1) since
rℓ(eΠ1ω

W (k)
ψ,V

W (k)
X

) = π1 ⊗Fℓ Θ(π1).

At the moment, the only information we have control on is about rℓ(Θ(Π1)), which is the
semisimplification of Θ(π1). So it does not tell us much about θ(π1), except if rℓ(Θ(Π1))
has length at most 1. Also, even when ℓ is banal with respect to H1 and H2, it is not true
any irreducible integral representation has irreducible reduction modulo ℓ. Therefore it
is not possible to generalise our arguments beyond the cuspidal case.
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